• Title/Summary/Keyword: Sheet Material

Search Result 1,574, Processing Time 0.024 seconds

Curing Temperature of Concrete Using Bubble Sheet with Carbon-based Photothermal Materials (탄소계 광발열 소재 혼입 버블시트를 적용한 콘크리트의 양생온도 특성)

  • Lee, Seung-Min;Lee, Hyeon-Jik;Baek, Sung-Jin;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.45-46
    • /
    • 2023
  • This study examined the curing temperature of concrete with a photothermal insulation sheet to shorten the curing time of concrete as part of construction cost and period reduction. According to the experiment results, the heating performance effect is confirmed through the temperature difference between photothermal insulation sheet and bubble sheet. And it has a high curing temperature in the order of bubble sheet (photo heating material B) > bubble sheet (photo heating material A) > bubble sheet on same layers.

  • PDF

Development of combined waterproofing method of top-down double reinforced method using two-blade protruding waterproof sheet(Mock-Up Test) (양날개 돌출형 방수시트를 이용한 접합부 탑다운 2중 보강방식 복합방수공법의 개발 연구(Mock-Up Test))

  • Choi, Eun-Gyu;Song, Je-Young;Lee, Sun-Gyu;Park, Jong-Sun;Kim, Byoung-Il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.279-280
    • /
    • 2018
  • The waterproofing material can be roughly divided into a coating material and a sheet waterproofing material. In the case of coating waterproofing materials, sheet waterproofing materials, which are easy to use in terms of workability and quality control, have been recently used because of their incomplete use of coating thickness, long curing time and poor blending due to in situ blending. However, in the case of the sheet waterproofing material, since the sheet overlapping portion is inevitably generated, various defects (breakage due to the behavior) are frequently observed. Therefore, it is imperative to establish fundamental measures to minimize this.

  • PDF

Sensitivity Analysis of Material and Process Variables Affecting on the Stamping Formability (재료변수와 공정변수가 스템핑 성형성에 미치는 영향 연구)

  • Kim, Youngsuk;Park, KeeChul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2246-2256
    • /
    • 1996
  • To investigate the effect of material and precess variables on stamping formability of sheet materials, simulations for the cup drawing and the Yoshida buckling test were carried out using ABAQUS, commercial nonlinear finite element analysis code. The various factor effects on stamping formability of sheet materials were analyzed by the designed process according to Taguch's orthogonal array experiment. Cup drawing simulation showed that local neckling was very sensitive to plastic anisotropy parameter of sheet material and friction coefficient between sheet and tool interface. Simulations for the Yoshida buckling test have clarified that buckling behaviour of sheet material was mostly susceptible to yield stress and sheet thickness mostly. However, plastic anisotropy parameter and strain hardening coefficient affect moderately buckling behaviour of steel sheets after the buckling initiation.

Analysis of Permeability Characteristic for Z type Steel Sheet Pile by Field Test (현장시험 시공을 통한 Z형 강널말뚝의 현장차수특성 분석)

  • 이용수;정하익;홍승서;이광범;김상진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.325-330
    • /
    • 2000
  • In general steel sheet pile use the containment system, vertical barrier systems for waste disposal and landfill purposes, roads in excavation which have a more permanent character or temporary structure. The sheet pile joints between section of the wall are sealed with a filter material arid the resistance to seepage is a function of the type of material employed. The aim of this paper is to review a characteristic of permeability for Z type sheet pile by field test in various condition.

  • PDF

A Study of the FEM Method on the Clad Sheet Metal Formability (Clad Sheet(Mg-Al-SUS) 성형성에 관한 해석 기법의 연구)

  • Jung, T.W.;Lee, Y.S.;Kim, D.;Hoon, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.399-402
    • /
    • 2009
  • The Clad sheet is made roll-bonding process of the one or more material with the different property. Good formability is an essential property in order to deform a clad metal sheet to a part or component. In this study, the mechanical properties and formability of a Mg-Al-SUS clad sheet are investigated. The clad sheet was deformed at elevated temperatures because of its poor formability at room temperature. Tensile tests of the each material and clad sheet were performed at various temperatures and at various strain rates. The limited draw ration (LDR) was obtained using a deep drawing test to measure the formability of the clad sheet. A finite element (FE) analysis was performed to predict formability of the cup drawing product, one_layer model and three_layer model.

  • PDF

Analytical Study of the Effect of Material Properties on the Formability of Sheet Metals based on the M-K Model (M-K 모델 기반의 박판금속 성형성 평가에서 물성의 영향에 대한 해석적 연구)

  • Lou, Y.;Kim, S.B.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.393-398
    • /
    • 2010
  • This paper investigates the effect of material properties on the formability of sheet metals based on the Marciniak-Kuczynski model (M-K model). The hardening behavior of the material is modeled as the Hollomon model with the strain rate effect. The yield surfaces are constructed with Hosford79 yield function. The material properties considered in this study include the R-value, the strain hardening exponent, the strain rate hardening exponent, and the crystal structure of the material. The effect of the crystal structure on formability is roughly expressed as the change of the yield surface by varying the value of the exponent in Hosford79 yield function. Results show that the R-value affects neither the magnitude nor the shape of right hand side of forming limit diagrams (FLDs). Higher strain hardening exponent and higher strain rate hardening exponent improve the formability of sheet metals because they stabilize the forming processes.

Study About Measurement of Interfacial Bonding Strength of STS/Al Clad sheet by Blanking Process (블랭킹 공정을 이용한 STS/Al 클래드 판재의 계면 접합력 측정에 관한 연구)

  • Kim, T.H.;Lee, K.S.;Kim, J.H.;Moon, Y.H.;Lee, Y.S.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.267-275
    • /
    • 2018
  • The clad sheet material is produced by a roll-bonding process of one or more materials with different properties. Good formability of clad sheet material is an essential property in to deform a clad metal sheet into a part or component. Performance of the clad sheet material largely depends on interfacial bond strength between different materials. In this study, interfacial bond strength of STS/Al clad sheet was analyzed by varying experimental parameters using a blanking process. Experimental parameters are the punching speed, clearance, and stacking order of plate materials. In addition, blanking test results were compared with bond strengths measured by the T-peel test, that analyzes interface bonding strength of the standard clad sheet. The blanking process was analyzed by the finite element method under the sticking condition of interface of different materials, and experimental results and analysis results were compared.

The Sheet Resistance Properties of Tungsten Nitride Thin films for Intergrated Circuit (IC소자용 질화 텅스텐 박막의 면저항 특성)

  • 이우선;정용호;김남오;정종상;유병수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.94-97
    • /
    • 1997
  • We investigated the sheet resistance properties of tungsten nitride thin films deposited by RF and DC sputtering system. It deposited at various conditions that determine the sheet resistance. The properties of the sheet resistance of these films were measured under various conditions. Sheet resistance analysed under the flow rate of the argon gas and contents of nitrogen from nitrogen-argon gas mixtures. We found that these sheet resistance were largely depend on the temperature of substrate, gas flow rate and RF power. Very high and low sheet resistance of tungsten films obtained by DC sputtering. As the increase of contents of nitrogen gas obtained from nitrogen-argon gas mixture, tungsten nitride thin films deposited by the reactive DC sputtering and the sheet resistance of these films were increased.

  • PDF

Press forming severity analysis and selection of optimum sheet steel properties for customer lines by using 3-D simulation program. (삼차원 프레스가공 시뮬레이션 기술을 활용한 수요가 가공공정 분석과 최적 재질선정)

  • 박기철;한수식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.111-131
    • /
    • 1996
  • In order to analyze stamping processes and to select optimum material properties of sheet steels for customer lines, 3-dimensional finite element analysis software were used. Commercial explicit finite element code, PAM-STAMP, was able to simulate 3-dimensional press formed parts with good accuracy and gave some useful results by orthogonal array experiments. Deformation of draw-bead were predicted by ABAQUS accurately, so that material selection for those parts by simulation were possible.

The green sheet properties of multilayer chip filter for mobile communication (이동통신용 적층 칩 필타 제작에서의 green sheet 특성)

  • 윤중락;이헌용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.443-446
    • /
    • 1997
  • This paper presents green sheet Properties of multilayer chip filter for mobile communication. The role of solid loading content and lamination conditions in determining some of the green sheet properties are present. The optimun conditions were obtained solid loading 62:38, lamination temperature 7$0^{\circ}C$, lamination press 300~400 Kg/$\textrm{cm}^2$.

  • PDF