DOI QR코드

DOI QR Code

Study About Measurement of Interfacial Bonding Strength of STS/Al Clad sheet by Blanking Process

블랭킹 공정을 이용한 STS/Al 클래드 판재의 계면 접합력 측정에 관한 연구

  • 김태호 (한국기계연구원 부설 재료연구소) ;
  • 이광석 (한국기계연구원 부설 재료연구소) ;
  • 김지훈 (부산대학교 기계공학과) ;
  • 문영훈 (부산대학교 기계공학과) ;
  • 이영선 (한국기계연구원 부설 재료연구소) ;
  • 윤은유 (한국기계연구원 부설 재료연구소)
  • Received : 2018.05.04
  • Accepted : 2018.08.27
  • Published : 2018.10.01

Abstract

The clad sheet material is produced by a roll-bonding process of one or more materials with different properties. Good formability of clad sheet material is an essential property in to deform a clad metal sheet into a part or component. Performance of the clad sheet material largely depends on interfacial bond strength between different materials. In this study, interfacial bond strength of STS/Al clad sheet was analyzed by varying experimental parameters using a blanking process. Experimental parameters are the punching speed, clearance, and stacking order of plate materials. In addition, blanking test results were compared with bond strengths measured by the T-peel test, that analyzes interface bonding strength of the standard clad sheet. The blanking process was analyzed by the finite element method under the sticking condition of interface of different materials, and experimental results and analysis results were compared.

Keywords

References

  1. B. A. Movchan, F. D. Lemkey, 1997, Mechanical properties of fine-crystalline two-phase materials, Mater. Sci. Eng. A, Vol. 224, No. 1-2, pp. 136-145. https://doi.org/10.1016/S0921-5093(96)10455-X
  2. G. Heness, R. Wuhrer, W. Y. Yeung, 2008, Interfacial strength development of roll-bonded aluminium/copper metal laminates, Mater. Sci. Eng. A, Vol. 483-484, No. 1, pp. 740-742. https://doi.org/10.1016/j.msea.2006.09.184
  3. S. T. Hong, K.S. Weil, I. T. Bae, J. P. Choi, J. Pan, 2010, Annealing induced interfacial layers in niobium-clad stainless steel developed as dipolar plate material for polymer electrolyte membrane fuel cell stacks, J. Power Sources, Vol. 195, No. 9, pp. 2592-2598. https://doi.org/10.1016/j.jpowsour.2009.10.034
  4. L. Ghalandari, M. M. Moshksar, 2010, High-strength and high-conductive Cu/Ag multilayer produced by ARB, J. Alloys Compd., Vol. 506, No. 1, pp. 172-178. https://doi.org/10.1016/j.jallcom.2010.06.172
  5. F. Nowicke, A. Zavaliangos, H. C. Rogers, 2006, The effect of roll and clad sheet geometry on the necking instability during rolling of clad sheet metals, Int. J. of Mechanical Sciences, Vol. 48, No. 8, pp. 868-877. https://doi.org/10.1016/j.ijmecsci.2006.01.021
  6. S. H. Choi, K. H. Kim, K. H. Oh, D. N. Lee, 1997, Tensile deformation behavior of stainless steel clad aluminum bilayer sheet, Mater. Sci. and Eng. A, Vol. 222, No. 2, pp. 158-165. https://doi.org/10.1016/S0921-5093(96)10514-1
  7. K. Osakada, K. Mori, 1987, Prediction of Ductile Fracture in Cold Forging, CIRP Annals, Vol. 27, No. 1, pp. 135-139.
  8. F. A. McClintock, 1968, A Criterion for Ductile Fracture by the Growth of Hole, J. Appl. Mech., Vol. 35, No. 2, pp. 363-371. https://doi.org/10.1115/1.3601204
  9. T. C. Lee, L. C. Chan, P. F. Zheng, 1997, Application of the Finite-Element Deformation Method in the Fine Blanking Process, J. of Mater. Process. Tech, Vol. 63, No. 1-3, pp. 744-749. https://doi.org/10.1016/S0924-0136(96)02717-3
  10. A. K. Ghosh, 1976, A criterion for ductile fracture in sheets under biaxial loading, Metallurgical Transactions, Vol. 7, No. 4, pp. 523-533. https://doi.org/10.1007/BF02643968
  11. M. G. Cockcroft, D.J. Latham, 1968, Ductility and the Workability of Metals, J. Inst. Metals, Vol. 96, pp. 33-39.