• Title/Summary/Keyword: Sheet Beam

Search Result 369, Processing Time 0.03 seconds

Fabrication of Probe Beam by Using Joule Heating and Fusing (절연절단법을 이용한 프로브 빔의 제작)

  • Hong, Pyo-Hwan;Kong, Dae-Young;Lee, Dong-In;Kim, Bonghwan;Cho, Chan-Seob;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • In this paper, we developed a beam of MEMS probe card using a BeCu sheet. Silicon wafer thickness of $400{\mu}m$ was fabricated by using deep reactive ion etching (RIE) process. After forming through silicon via (TSV), the silicon wafer was bonded with BeCu sheet by soldering process. We made BeCu beam stress-free owing to removing internal stress by using joule heating. BeCu beam was fused by using joule heating caused by high current. The fabricated BeCu beam measured length of 1.75 mm and width of 0.44 mm, and thickness of $15{\mu}m$. We measured fusing current as a function of the cutting planes. Maximum current was 5.98 A at cutting plane of $150{\mu}m^2$. The proposed low-cost and simple fabrication process is applicable for producing MEMS probe beam.

Development Process of Side Impact Beam for Automotive Light-Weighting Door using Sheet Type (자동차 도어 경량화를 위한 판재형 사이드 임팩트 빔 개발 프로세스)

  • Lee, I.C.;Lee, T.K.;Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.130-137
    • /
    • 2015
  • This paper presents the development process of automotive side door impact beam for passenger cars. Weight reduction while maintaining functional requirements is one of the major goals in the automotive industry. In this study, thin-walled side door beam using quenchable boron steel was designed to reduce the weight of conventional side door tubular one. In order to estimate design for the proposed side door beams, the static side impact protection tests(FMVSS 214) were conducted using the finite element method. Based on the simulation results, geometry modification of the side door beam has been performed via creating new reinforcing ribs. Furthermore, the manufactured frontal impact beam was mounted on the real side door of a passenger car, and then static impact protection test carried out. It is concluded that the presented test results can provide significant contribution to the stiffness of side door impact beams and light-weighting door research.

Estimation of Icebreaking Forces and Failure Length of Ice Rubbles on Infinite Ice Sheet (무한 빙판에서의 쇄빙력과 파단 빙편의 크기 예측)

  • Choi, Kyung-Sik;Lee, Jin-Kyoung;Kim, Hyun-Soo;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.75-83
    • /
    • 2004
  • Ice rubble pieces broken by the bow impact load and side hull of an icebreaking vessel usually pass along the ship's bottom hull and may hit the propeller/rudder or other stern structures causing serious damage to ship's hull . Therefore it is important to estimate the size of broken ice pieces during the icebreaking process. The dynamic interaction process of icebreaker with infinite ice sheet is simplified as a wedge type beam of finite length supported by elastic foundation. The wedge type ice beam is leaded with vertical impact forces due to the inclined bow stem of icebreaking vessels. The numerical model provides locations of maximum dynamic bending moment where extreme tensile stress arises and also possible fracture occurs. The model can predict a failure length of broken ice sheet given design parameters. The results are compared to Nevel(1961)'s analytical solution for static load and observed pattern of ice sheet failure onboard an icebreaker. Also by comparing computed failure length with the characteristic length, the meaning of ice rubble sizes is discussed.

Steel processing effects on crash performance of vehicle safety related applications

  • Doruk, Emre
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.351-358
    • /
    • 2017
  • Due to the increasing competition, automotive manufacturers have to manufacture highly safe and light vehicles. The parts which make up the body of the vehicle and absorb the energy in case of a crash, are usually manufactured with sheet metal forming methods such as deep drawing, bending, trimming and spinning. The part may get thinner, thicker, folded, teared, wrinkled and spring back based on the manufacturing conditions during manufacturing and the type of application methods. Transferring these effects which originate from the forming process to the crash simulations that are performed for vehicle safety simulations, makes accurate and reliable results possible. As a part of this study, firstly, the one-step and incremental sheet metal forming analysis (deep drawing + trimming + spring back) of vehicle front bumper beam and crash boxes were conducted. Then, crash performances for cases with and without the effects of sheet metal forming were assessed in the crash analysis of vehicle front bumper beam and crash box. It was detected that the parts absorbed 12.89% more energy in total in cases where the effect of the forming process was included. It was revealed that forming history has a significant effect on the crash performance of the vehicle parts.

An Experimental Study on Improved Bearing-Capacity of Reinforced Concrete Beam Using Reinforcement Materials (보강재를 사용한 철근 콘크리트 보의 내력보강에 관한 실험적 연구)

  • 홍상균;박기철;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.495-500
    • /
    • 1996
  • In this paper, it is the effect of using fiber sheet (Carbon Fiber Sheet & Aramid Fiber Sheet) and Steel Plate for reinforced concrete beam, 25 specimens are tested, 16 specimens for bending capacity and the other are for shear capacity. In the case of bending testing, the kind and quantity of the reinforcement materials, the bondage and the existence of crack were selected as experimental variables. And in the case of shear testing, it is testified the effect of reinforcement with the variables of the method of reinforcement (side type and U type). As a result, using the reinforcement meterials can increase the capacity of bending stress.

  • PDF

A Study of Tensile Strength in 18% Ni Maraging Steel Sheet Welded with Electron Beam (E.B 용접된 18% Ni 마르에이징강 박판의 인장이음강도에 관한 연구)

  • 정병호;김무길;김원녕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.157-165
    • /
    • 1997
  • The strength level of welded joint in room temperature and elevated temperature up to $600^{\circ}C$ was investigated in 250 and 300 grade 18% Ni maraging steel sheet welded with electron beam. The results obtained in this study are as follows; 1. Optimum welding heat input was 600J/cm in 1.0mm thickness and the room temperature tensile strength, joint efficiency of welded joint treated with optimum aging condition were found to be about 166kg/$mm^2$, 95% in 250 grade, 189kg/$mm^2$, 92% in 300 grade maraging steel sheet, respectively. 2. Tensile strength of welded joint in room temperature increased slightly by aging after repeated solution heat treatment, but the fracture mode showed a shear. 3. Joint efficiency at a temperature between $540^{\circ}C$and $600^{\circ}C$ found to be about 72% to 55%, but the joint efficiency exceeded about 90% below $300^{\circ}C$. 4. The fracture occurred in most weld metal, and the fracture surface showed a shallow dimple.

  • PDF

Experimental and analytical investigation of steel beams rehabilitated using GFRP sheets

  • El Damatty, A.A.;Abushagur, M.;Youssef, M.A.
    • Steel and Composite Structures
    • /
    • v.3 no.6
    • /
    • pp.421-438
    • /
    • 2003
  • Aging and deterioration of existing steel structures necessitate the development of simple and efficient rehabilitation techniques. The current study investigates a methodology to enhance the flexural capacity of steel beams by bonding Glass Fibre Reinforced Plastic (GFRP) sheets to their flanges. A heavy duty adhesive, tested in a previous study is used to bond the steel and the GFRP sheet. In addition to its ease of application, the GFRP sheet provides a protective layer that prevents future corrosion of the steel section. The study reports the results of bending tests conducted on a W-shaped steel beam before and after rehabilitation using GFRP sheets. Enhancement in the moment capacity of the beam due to bonding GFRP sheet is determined from the test results. A closed form analytical model that can predict the yield moment as well as the stresses induced in the adhesive and the GFRP sheets of rehabilitated steel beam is developed. A detailed finite element analysis for the tested specimens is also conducted in this paper. The steel web and flanges as well as the GFRP sheets are simulated using three-dimensional brick elements. The shear and peel stiffness of the adhesive are modeled as equivalent linear spring systems. The analytical and experimental results indicate that a significant enhancement in the ultimate capacity of the steel beam is achieved using the proposed technique. The finite element analysis is employed to describe in detail the profile of stresses and strains that develop in the rehabilitated steel beam.

Vibration Suppression of Beam Using Magnet and Coil (자석과 코일을 이용한 빔의 진동 억제)

  • Cheng, Tai-Hong;Jung, Jung-Hwan;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.727-730
    • /
    • 2007
  • Coil inductor has been used widely as an electromagnet, because of the high magnetic filed resulting from the voltage applied to the coil. In this study the coils were used in vibration suppression as an actuator. The control system consists of a coil attached in aluminum beam and a permanent magnet set at its bottom. This actuation method is easy to be incorporated into the system and allows significant forces to be applied without contacting with the structure. Three types of coils (cylindrical type, square type, Circular sheet type) were employed in vibration suppression of cantilever beam. The positive position feedback (PPF) controller was applied to the magnet-coil actuator to suppress the first mode of vibration. Experimental results showed that the cylindrical type and square type coil made good vibration suppression efficiency under PPF controller than their eddy current damper. However, there was minimal difference for the circular sheet type coil if compared with its eddy current damper.

  • PDF

Study on the Fatigue Behaviors of R/C Beam Strengthened with Steel Plate and Carbon Fiber Sheet (강판 및 탄소섬유 sheet로 보강된 R/C 보의 피로거동에 관한 연구)

  • 심종성;홍영균;최완철;황의숭;이차돈;배인환;박성재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.319-324
    • /
    • 1995
  • Strengthening a damaged structure by bonding steel plate on the surface of cracked structural members have been widely accepted for strengthening the structural components Recently, however, caron fiber sheets have been developed in order to achive more effective way of strengthening damaged structures due to their superior material properties to those of conventionally used steel plates in terms of their lighter unit weight and higher tensile strength. It has been reported that when both methods are applied to a damaged beam element, flexural strength and its stiffness of a beam increase and the rate of crack development as well as crack width and edflection under service loads are reduced, In this study some experiments are performed in order to comparetively observe the structural properties of the damaged beams which are either strengthened with different lengths of steel plates or with carbon sheets on the crack propagation, failure mechanisms, and load-deflection charateristics under the fatigue loadings.

  • PDF