• 제목/요약/키워드: Shearlet transform

검색결과 7건 처리시간 0.02초

3차원 쉐어렛 변환과 심층 잔류 신경망을 이용한 무참조 스포츠 비디오 화질 평가 (No-Reference Sports Video-Quality Assessment Using 3D Shearlet Transform and Deep Residual Neural Network)

  • 이기용;신승수;김형국
    • 한국멀티미디어학회논문지
    • /
    • 제23권12호
    • /
    • pp.1447-1453
    • /
    • 2020
  • In this paper, we propose a method for no-reference quality assessment of sports videos using 3D shearlet transform and deep residual neural networks. In the proposed method, 3D shearlet transform-based spatiotemporal features are extracted from the overlapped video blocks and applied to logistic regression concatenated with a deep residual neural network based on a conditional video block-wise constraint to learn the spatiotemporal correlation and predict the quality score. Our evaluation reveals that the proposed method predicts the video quality with higher accuracy than the conventional no-reference video quality assessment methods.

쉬어렛 변환의 복소수 특성을 이용하는 무참조 영상 화질 평가 (No-Reference Image Quality Assessment Using Complex Characteristics of Shearlet Transform)

  • 사이드 마흐모드포어;김만배
    • 방송공학회논문지
    • /
    • 제21권3호
    • /
    • pp.380-390
    • /
    • 2016
  • 화질 평가 방법은 그동안 많은 방법이 소개되어 왔다. 특히 우수한 성능을 보여주는 무참조 평가에서 기법에서 발전이 지속되어 왔다. 본 논문에서는 쉬어렛 영역에서 자연영상의 통계적 특성에 기반한 무참조 영상화질 평가 방법을 제안한다. 제안 방법은 쉬어릿 계수의 통계 특성으로부터 왜곡에 민감한 특징을 추출한다. 쉬어렛 변환의 복소수 계수로부터 위상과 크기 특징을 얻어낸다. 또한 쉬어렛 변환은 다양한 스케일로 영상을 분석할 수 있기 때문에, 스케일간의 계수의 의존성에 대한 왜곡의 영향을 분석한다. 화질 예측을 위해서 특징들은 SVM(support vector machine)을 이용하여 영상 왜곡 분류 및 화질 예측에 활용된다. 실험결과는 제안 방법이 주관적 평가와의 높은 상관도를 보여주고, 또한 기존 참조 및 무참조 방법보다 우수한 성능을 보여준다.

Human Tracking Based On Context Awareness In Outdoor Environment

  • Binh, Nguyen Thanh;Khare, Ashish;Thanh, Nguyen Chi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.3104-3120
    • /
    • 2017
  • The intelligent monitoring system has been successfully applied in many fields such as: monitoring of production lines, transportation, etc. Smart surveillance systems have been developed and proven effective in some specific areas such as monitoring of human activity, traffic, etc. Most of critical application monitoring systems involve object tracking as one of the key steps. However, task of tracking of moving object is not easy. In this paper, the authors propose a method to implement human object tracking in outdoor environment based on human features in shearlet domain. The proposed method uses shearlet transform which combines the human features with context-sensitiveness in order to improve the accuracy of human tracking. The proposed algorithm not only improves the edge accuracy, but also reduces wrong positions of the object between the frames. The authors validated the proposed method by calculating Euclidean distance and Mahalanobis distance values between centre of actual object and centre of tracked object, and it has been found that the proposed method gives better result than the other recent available methods.

No-reference quality assessment of dynamic sports videos based on a spatiotemporal motion model

  • Kim, Hyoung-Gook;Shin, Seung-Su;Kim, Sang-Wook;Lee, Gi Yong
    • ETRI Journal
    • /
    • 제43권3호
    • /
    • pp.538-548
    • /
    • 2021
  • This paper proposes an approach to improve the performance of no-reference video quality assessment for sports videos with dynamic motion scenes using an efficient spatiotemporal model. In the proposed method, we divide the video sequences into video blocks and apply a 3D shearlet transform that can efficiently extract primary spatiotemporal features to capture dynamic natural motion scene statistics from the incoming video blocks. The concatenation of a deep residual bidirectional gated recurrent neural network and logistic regression is used to learn the spatiotemporal correlation more robustly and predict the perceptual quality score. In addition, conditional video block-wise constraints are incorporated into the objective function to improve quality estimation performance for the entire video. The experimental results show that the proposed method extracts spatiotemporal motion information more effectively and predicts the video quality with higher accuracy than the conventional no-reference video quality assessment methods.

SAR Image De-noising Based on Residual Image Fusion and Sparse Representation

  • Ma, Xiaole;Hu, Shaohai;Yang, Dongsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3620-3637
    • /
    • 2019
  • Since the birth of Synthetic Aperture Radar (SAR), it has been widely used in the military field and so on. However, the existence of speckle noise makes a good deal inconvenience for the subsequent image processing. The continuous development of sparse representation (SR) opens a new field for the speckle suppressing of SAR image. Although the SR de-noising may be effective, the over-smooth phenomenon still has bad influence on the integrity of the image information. In this paper, one novel SAR image de-noising method based on residual image fusion and sparse representation is proposed. Firstly we can get the similar block groups by the non-local similar block matching method (NLS-BM). Then SR de-noising based on the adaptive K-means singular value decomposition (K-SVD) is adopted to obtain the initial de-noised image and residual image. The residual image is processed by Shearlet transform (ST), and the corresponding de-noising methods are applied on it. Finally, in ST domain the low-frequency and high-frequency components of the initial de-noised and residual image are fused respectively by relevant fusion rules. The final de-noised image can be recovered by inverse ST. Experimental results show the proposed method can not only suppress the speckle effectively, but also save more details and other useful information of the original SAR image, which could provide more authentic and credible records for the follow-up image processing.

A Double-channel Four-band True Color Night Vision System

  • Jiang, Yunfeng;Wu, Dongsheng;Liu, Jie;Tian, Kuo;Wang, Dan
    • Current Optics and Photonics
    • /
    • 제6권6호
    • /
    • pp.608-618
    • /
    • 2022
  • By analyzing the signal-to-noise ratio (SNR) theory of the conventional true color night vision system, we found that the output image SNR is limited by the wavelength range of the system response λ1 and λ2. Therefore, we built a double-channel four-band true color night vision system to expand the system response to improve the output image SNR. In the meantime, we proposed an image fusion method based on principal component analysis (PCA) and nonsubsampled shearlet transform (NSST) to obtain the true color night vision images. Through experiments, a method based on edge extraction of the targets and spatial dimension decorrelation was proposed to calculate the SNR of the obtained images and we calculated the correlation coefficient (CC) between the edge graphs of obtained and reference images. The results showed that the SNR of the images of four scenes obtained by our system were 125.0%, 145.8%, 86.0% and 51.8% higher, respectively, than that of the conventional tri-band system and CC was also higher, which demonstrated that our system can get true color images with better quality.

A multisource image fusion method for multimodal pig-body feature detection

  • Zhong, Zhen;Wang, Minjuan;Gao, Wanlin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권11호
    • /
    • pp.4395-4412
    • /
    • 2020
  • The multisource image fusion has become an active topic in the last few years owing to its higher segmentation rate. To enhance the accuracy of multimodal pig-body feature segmentation, a multisource image fusion method was employed. Nevertheless, the conventional multisource image fusion methods can not extract superior contrast and abundant details of fused image. To superior segment shape feature and detect temperature feature, a new multisource image fusion method was presented and entitled as NSST-GF-IPCNN. Firstly, the multisource images were resolved into a range of multiscale and multidirectional subbands by Nonsubsampled Shearlet Transform (NSST). Then, to superior describe fine-scale texture and edge information, even-symmetrical Gabor filter and Improved Pulse Coupled Neural Network (IPCNN) were used to fuse low and high-frequency subbands, respectively. Next, the fused coefficients were reconstructed into a fusion image using inverse NSST. Finally, the shape feature was extracted using automatic threshold algorithm and optimized using morphological operation. Nevertheless, the highest temperature of pig-body was gained in view of segmentation results. Experiments revealed that the presented fusion algorithm was able to realize 2.102-4.066% higher average accuracy rate than the traditional algorithms and also enhanced efficiency.