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Abstract

The field of Image Quality Measure (IQM) is growing rapidly in recent years. In particular, there was a significant progress in
No-Reference (NR) IQM methods. In this paper, a general-purpose NR IQM algorithm is proposed based on the statistical
characteristics of natural images in shearlet domain. The method utilizes a set of distortion-sensitive features extracted from
statistical properties of shearlet coefficients. A complex version of the shearlet transform is employed to take advantage of phase
and amplitude features in quality estimation. Furthermore, since shearlet transform can analyze the images at multiple scales, the
effect of distortion on across-scale dependencies of shearlet coefficients is explored for feature extraction. For quality prediction,
the features are used to train image classification and quality prediction models using a Support Vector Machine (SVM). The
experimental results show that the proposed NR IQM is highly correlated with human subjective assessment and outperforms
several Full-Reference (FR) and state-of-art NR IQMs.
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| . Introduction

Following the widespread application of imaging sys-
tems, digital images can be easily captured, stored and
shared among users. However, visual information is subject
to different degradations during image processing and com-
pression steps which can affect the visual quality. Human
subjective test is a reliable method of visual quality assess-
ment, however, it is costly and time-consuming. Thus, im-
age quality is measured using an objective tool with high
consistency to human evaluation. Different objective Image
Quality Measures (IQMs) have been developed in recent
years to assess the visual quality free of human interfer-
ence[1].

The objective IQMs fall into three categories based on
the amount of accessible information: Full-Reference (FR),
Reduced-Reference (RR) and No-Reference (NR). In FR
methods, both reference and distorted images are available.
The RR methods aim to measure the quality of distorted
image by using only partial information of the reference
image. The NR or blind IQMs are used when there is no
information about the reference image.

Most of the existing NR IQMs can be divided into two
categories: (1) Distortion-specific method. This approach is
dedicated to measuring the severity of a single type of dis-
tortion[2,3]. (2) General-purpose approach based on
Natural Scene Statistics (NSS). This NR IQM method can
be used in various distortion types and depends on the de-
viations from the regularity of NSS features. Recent works
mostly focused on extracting a number of quality-related
features from the statistical model of natural images and
performed a mapping from feature space to the predicted
quality score[4,5,6].

Shearlet transform is a multidimensional version of the
conventional wavelet transform that analyzes the image at
multiple scales and directional subbands[7]. In this paper,
a new NR IQM (ShearletiQM) is proposed based on mod-

eling the NSS in shearlet domain. Natural images possess
certain statistical properties varying in the presence of
distortion. Shearlet representation can efficiently determine
the types of statistical variations caused by distortion. Thus,
quality-related features extracted from statistics of shearlet
coefficients are used to exhibit the variations and classify
different distortion types. Finally, image quality is obtained
by mapping from feature space to quality index using
learning and regression methods.

The rest of the paper is organized as follows: Section
2 describes the framework of the proposed method. Section
3 explains the complex shearlet transform and feature ex-
traction method is described in Section 4. In Section 5, the
two-stage framework for distortion classification and qual-
ity prediction is presented. The experimental results are re-
ported and discussed in Section 6. Finally, Section 7 con-

cludes the paper.

II. Methodology

The proposed method is based on the fact that natural
images exhibit certain statistical properties varying in the
presence of distortions. These statistical changes are well
presented in shearlet domain. The amount and the charac-
teristics of the variations depend on the degree and type
of distortion. Therefore, the quality degradation can be pre-
dicted by quantifying the deviations of shearlet coefficients
of distorted images from those of a pristine image. Here,
a number of quality-related features are extracted in shear-
let domain and a quality index is obtained using a machine
learning approach. The framework of the proposed method
is summarized in Fig. 1. First, a Complex Shearlet
Transform (CST) decomposes an input image into multiple
scales and directional subbands. Second, various features
are extracted from real- and complex-valued shearlet co-

efficients in subbands. Finally, the features are trained for
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A disadvantage of wavelet transform is its limited capa-
bility in dealing with multivariate and directional data.
Therefore, some variations of wavelets such as curve-
lets[9], contourlets[10] and shearlets[7] are proposed to
overcome the wavelet limitations. Shearlet transform pro-
vides sparse representation for multi-dimensional data and
anisotropic information at multiple scales. Thus, it can de-
liver an accurate detection of signal singularities.
Considering these properties, shearlet transform provides
accurate information about distortion effects. The shearlets
form an affine system which is parameterized by three pa-
rameters: scaling, shear, and translation. The shearlet trans-

form of an image f is defined as:
f—>SH¢ f(a,s,t)=< fi®asi > (1)

where a>0 is the scale parameter, s = R is the shear pa-

rameter and 1< R* denotes the translation parameter. The

shearlet coefficient (¢, ,,) is given by:

In order to achieve optimal sparsity, the anisotropic dila-
tion matrix Aa ensures the multi-scale property while the
shear matrix S, provides a mean to detect directions.

The CST is useful especially for the analysis of the
phase. Thus, in addition to real-valued coefficients, the re-
lation between real and imaginary parts is explored using
phase and amplitude to extract discriminative features. The
imaginary part can be obtained using the Hilbert transform
of the real part. Let ) = Hilbert(¢). CST coefficients are
then computed by

CSHf(a,s,t) = SH, f(a,s,t)+ jSH, f(a,s,t) (3)
and

SH(pf(a,s,t) =< frbuss > Sﬁ@j(a,s,t} =<[fiYus >
where SH,and SH, denote the real and imaginary parts

of complex shearlet, respectively.
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IV. Feature Extraction

Feature selection is the important part of creating a NR
IQM model. The features should be independent from the
image content and sensitive to degree and type of the
distortion. To extract features, the statistical characteristics
of shearlet coefficients are modeled for natural and dis-
torted images. Fig. 2 shows an original natural image
(bikes) from LIVE image database[11] and its five distorted
versions.

First, the images are divided into blocks of size 256x256
and each block is transformed to 4 scales and 6 directions
(total number of 24 subbands) using shearlet transform.
Subsequently, the characterizing features are extracted in
each block and an average feature vector computed from
all blocks is used as a final one. As verified in experiments,
the statistical properties of shearlet coefficients are very
similar in different subbands of one scale, however, they
change across scales. Therefore in this work, the first sub-
bands of the scales is considered. In the following, various
features captured from real- and complex-valued co-

efficients are explained.

(dy

1. Real-valued shearlet features

Here, the features obtained from the statistical properties

of real-valued shearlet coefficients are described.

1.1 Single-subband statistics

The distribution of real-valued shearlet coefficients var-
ies by distortion and modeling the distribution makes it
possible to quantify these changes. Since high frequency
components of an image are more sensitive to distortion,
the distribution of real coefficients in the finest scale is uti-
lized in modeling. The first subband in the finest scale is
selected. Fig. 3 plots the histogram of normalized shearlet
coefficients for original image of Fig. 2 and its different
distorted versions. The distribution for original image has
characterized by large concentration of values around zero
and heavy tails. The distortion can affect the subband co-
efficients and consequently change the shape of the
distribution. As shown in the figure, distortions such as
Gaussian Blur (GBlur) increases the concentration of co-
efficients around zero and can be better fitted using

Laplacian model. Note that noise creates a more Gaussian

T2l 2. YA 57HO| off= HA (bikes, LIVE image database). (a) 24}, (b) JP2K 2=, (c) 7FRAICH E2] =, (d) JPEG 2=, (e) 7FRAISt S1OIE,

=
2 (f) HAE HOE o=

Fig. 2. Original image (bikes) and five distorted versions from LIVE image database. (a) Original image, (b) JP2K distorted image, (c) Gaussian
blur distorted image, (d) JPEG distorted image, (e) Gaussian white noise distorted image, and (f) Fast fading distorted image
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appearance due to increase of high frequency components.
Therefore, a GGD (Generalized Gaussian Distribution)
model is used to capture a wide range of shearlet statistics
in distorted images. The univariate GGD with zero mean

is given by:

Flaloy) = ae” P W

where ~ is the shape parameter, o and [ are normalizing

and scale parameters, respectively given by

I(3/)

__ B _ 1
X I(1/4)

“T2r(/) y

(5)

where o is the standard deviation and I" is the gamma

function computed by

15 -10 5 0 5
Realvalued shearlet coefficients

T2l 3. AHA 5719| ef=ol HytetE oAl M Aol s|AETH
Fig. 3 Histograms of normalized real-valued shearlet coefficients for
original image and five distortions

By adjusting the shape parameter, the GGD model can
span both Gaussian (7y=2) and Laplacian (y=1)
distributions. The features obtained from the statistical
properties of real-valued coefficients in a single subband

and can be summarized as:
fo=(p0) M

1.2 Joint distribution of coefficients across scales

A natural extension of subband’s univariate modeling is

to consider the joint density of subband coefficients in dif-
ferent scales. In order to explore the statistical depend-
encies existing across scales, the histograms of the first
subband of four scales are presented for (a) original image,
(b) JP2K and (c) noise distortion types in Fig. 4.
Comparing the histograms in four scales of the original im-
age (Fig. 4 (a)), the peak and tail weight are increased rath-
er monotonously from coarse to fine scale (Scale 1 to 4).
However, distortion can alter the relation between stat-
istical properties of subbands across scales. For instance,
comparing the four histograms of JP2K distortion with
original image (Figs. 4(a) and (b)), JP2K has higher peak
rate increase from coarse-to-fine scale than original image
especially from Scale 3 to 4. A significant amount of low
frequency values introduced by JP2K distortion yields in-
crease in peak and tail weight of the finer scales.

Since each distortion affects the across-scale depend-
encies of subbands in its own way, modeling the joint dis-
tribution of subbands across scales can effectively shows
the changes. Here, a MGGD (Multivariate Generalized
Gaussian Distribution) function is used to model the joint
distribution of four subbands. MGGD with zero mean is
given by

1@z )
f(alZy) =ae ? (8)
where

1)

= . "y
ﬂ_m/2]ﬂ(m/2,_y)2m/2~/ ‘21]/2’

m is the probability space dimension, X' is a dispersion
matrix which is equal to covariance only for Gaussian
distribution. Similar to univariate case, y is the shape pa-
rameter while Laplacian distribution is obtained by y=0.5
and ~=1 delivers a Gaussian distribution.

Various parameter estimation methods have been pro
posed for MGGD. We used the fast and reliable method
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Fig. 4. Histograms of shearlet coefficients in first subband of four scales for (a) Original image (b) JP2K (c) Noise

of moments given in [12]. Note that m is equal to the num-
ber of scales (m=4). The first subband of each scale is se-
lected to make n 4-dimensional random vectors. Then, the
method of moments estimates the MGGD model parame-

ters (,X). The second feature set is referred to as fig:

fjds = (7)'2” (9)

2. Complex-valued Shearlet features

The complex extension of shearlet transform is used to
represent the visual appearance of an image by phase and
amplitude information. The dependency between real and
imaginary parts of shearlet coefficients can be well de-
scribed in terms of phase and amplitude in polar
coordinate. The distributions of phase and amplitude have
consistent shape across original images but change sig-
nificantly in presence of distortion.

2.1 Phase statistics
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Fig. 5. Histograms of the phase values in the finest scale.
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Extracting the features from phase statistics of images
can be very useful in predicting image quality. Fig. 5 pres-
ents the histograms of phase values for original image as
well as JPEG and noise distortion types in the finest scale.
It can be observed that the phase histogram of the original
image is characterized by a bimodal distribution. The noise
distortion delivers a uniform histogram while JPEG dis-
tortion type presents a bimodal shape with higher peaks.

In order to model the observed bimodal histogram of
phase distribution, Maboudi et al.[13] proposed a phase
model composed of two Von-Mises distributions and a uni-
form circular distribution. Furthermore, comparing the peak
positions and concentration parameters, they observed that
the two peaks always have 1 distance and the shape of the
peaks are similar to each other. Inspired by their method
and because the phase bimodal distribution is symmetrical
around zero, a simple and fast method is used in which
only half of the phase values between [0,7] is modeled us-
ing a unimodal Von-Mises distribution. The model of

phase values located between [-m,0] is same as [0,n] but

Dansiy of Cosfficients (Normalized)

o

E 2 ] o 1 2 3

‘Shearlet Phase Magnitudes

(c)

Shearlet Phase Magnitudes

(b)

) JPEG, ¥ (c) =0|=
(a) Original image, (b) JPEG, and (c) Noise
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with the peak center shifted to the left by n. The unimodal

Von-Mises equation is given by:

1 ekcos(cﬁf ) (]0)

P@ (¢|knu) 27_(_]0 (k)

where Io(k) is the Bessel function of order 0, € is the mean
direction and k is a concentration parameter. When £ is
zero, the Von-Mises reduces to uniform distribution. The
maximum likelihood estimates of 6 and % are found for
each distribution based on the method in[14]. Fig. 6 shows
the histogram of the original image and the fitted
Von-Mises function in range [0 n]. Using the mean and
concentration parameters of Von-Mises model, a two-ele-

ment feature vector is defined as

fos = (0:k) (1)

it
it

JE 6. Hol= e oI’*E_EHL = Of OIA E“'
Fig. 6. Histogram of phase values and fitted Von-Mises model

2.2 Energy variations across scales

The amplitude represents the local energy distribution
and distortion can change the energy spectrum of an image.
Fig. 7 shows the mean scalar energy values for all images
of LIVE database in 24 subbands (6 subbands and 4
scales). It can be observed that the energy of subbands is
increased from coarse-to-fine scale for noise while the en-
ergy is decreased for rest of the distortion types. Also,
comparing subbands in any two scales, distortion can
change the energy across scales while the monotonicity of
energy variations within each scale is not affected. Since
the energy of distorted images is changing across scales,
the means of the logarithm of the amplitudes are computed

for the subbands over four scales. Then, the energy differ

Mean of logarithms of amplitudes

vV

M L I L
2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of subbands

J8 7. HEY H Af=EYe| 24 MEME0IMS] 2T 043 ZT19| Bxak

Az2 gﬂ f{ TEES MEMERS

Fig. 7. Mean values of the logarithms of the shearlet amplitudes in
all 24 subbands for original images and different distorted images of
LIVE database. The vertical axis shows the mean values and horizontal
axis denotes the number of subbands. The vertical dashed lines sepa-
rate the scales

ences between scales are captured as features. The energy

of the ith subband in the jth scale is given by
= Ellog(ICSHf(a,s,t)])) (12)

As mentioned earlier, the first subbands of scales are
considered. Therefore, a 3-dimensional feature vector can
be obtained by

Jas = (N14*N13v/l13*l‘12vﬂ12*Hu) (13)

Fig. 8 shows a 3D scatter plot between three features:

+ JPEG
“ Noise
_° ‘chIe|

A >
F2) =04
o

12 8. JPEG, 0|=, GBIur <=2| 3D AJlE E2
Fig. 8. 3D scatter plot of three extracted features across JPEG, noise

and GBlur distortion types
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shape parameter v (F(1)), mean direction of phase mode
0 (F(2)) and the first feature of f,s (F(3)) in Eq. (13). The
features are normalized to [0 1] and they are represented
for JPEG, noise and GBlur distortion types. As shown in
the figure, the features occupy different regions for based

on the distortion type in this parameter space.

V. Learning-based Quality Evaluation

In order to map the feature space to image quality scores,
a two-stage framework is performed using a machine learn-
ing approach. In the first stage, a probabilistic classifier
based on extracted features is trained to identify the type
of distortion and the probability of distortion occurrence.
Using Support Vector Machine (SVM), the probability that
a distorted image belongs to each of five distortion classes
is computed and a S-dimensional classification probability
vector p is obtained. In the second stage, the Support
Vector Regression (SVR) is adopted to train a quality pre-
diction model. From the regression model, a 5-dimensional
quality estimation vector q is obtained for a distorted image
classified in stage 1. The elements of the q vector denote
the quality scores of the image along five distortion types.

The final quality score Q is computed by:

Q:;-g (14)

The LIBSVM package[15] is used to implement the
SVR and SVM both with Radial Basis Function (RBF) ker-

nel in our method.

V. Experimental Results

The performance of the ShearletlQM is compared with
several FR and NR quality assessment methods. The LIVE

image database was used for training ShearletlQM. This
database contains 29 reference images subjected to five dis-
tortion types - JPEG, JP2K, GBlur, Gaussian white noise
(GWN) and Fast Fading (FF) - yielding a total number
of 779 distorted images. A Differential Mean Opinion
Score (DMOS) is available for each image that is repre-
sentative of the human subjective score. DMOS scores are
in the range [0,100] in which lower values indicate higher
quality. The performance could be varied according to test
data since they are used for either NR or FR metrics.

The image database was iteratively partitioned in to train
and test subsets to evaluate the performance of the pro-
posed method. The train and test images were separated by
content to ensure the validity of experiment. In each iter-
ation, the training set contained 80% of the original images
and the corresponding distorted images while the remaining
20% of images were used as test set. From training set,
classification and regression models were obtained and the
test images were evaluated using the constructed models.
The train-test set partitioning was randomly repeated 1,000
times and the performance indices were obtained in each
iteration. Finally, the median performance indices across
1,000 experiments were reported as the IQM performance.

The performance indices include Linear Correlation
Coefficients (LCC) and Spearman Rank Order Correlation
Coefficients (SROCC) between the objective IQM and sub-
jective DMOS.

Three FR IQMs including PSNR, SSIM[16] and VIF[17]
and five state-of-art NR IQMs namely, BIQI[4], BLIINDS
11[5], DIIVINE[18], CurveletiQM[19]and BRISQUE[6]
were used for comparison. Tables 1-4 compare the per-
formance of the ShearletiQM with other methods in terms
of median and standard deviation of LCC and SROCC
values.

As presented in the Tables, the performance of the pro-
posed method is statistically comparable with other FR and
state-of-art NR methods. Comparing to FR IQMs, the
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F 1. 1,000 SHEHIAES| HF LCC
Table 1. Median LCC comparison across 1,000 train-test

¥ 4. 1,000 SH&E|AES| SROCC 7o EZEMA|
Table 4. Standard deviation of SROCC values across 1,000 train-test

JP2K  JPEG GWN GBLUR  FF ALL

JP2K  JPEG GWN GBLUR FF ALL

PSNR 0.8688 0.8909 0.9441 0.8109 0.8625 0.8763

PSNR 0.0769 0.0587 0.0206 0.1210 0.0603 0.0598

SSIM 0.9202 0.9182 0.9655 0.8965 0.9277 0.8996

SSIM 0.0529 0.0391 0.0166 0.0881 0.0345 0.0536

VIF 0.9479 0.9572 0.9788 0.9542 0.9325 0.9540

VIF 0.0374 0.0131 0.0148 0.0215 0.0368 0.0231

BlQI 0.8056 0.9005 0.9725 0.8366 0.7688 0.8325

BlQI 0.0902 0.0460 0.0141 0.1122 0.1266 0.0836

DIIVINE 0.9233 0.9275 0.9882 0.9395 0.8805 0.9218

DIVINE  0.0454 0.0288 0.0074 0.0441 0.0743 0.0423

BLIINDSII  0.9389 0.9438 0.9625 0.9068 0.8988 0.9227

BLIINDSII  0.0463 0.0246 0.0163 0.0371 0.0591 0.0403

BRISQUE 0.9288 0.9662 0.9868 0.9496 0.9083 0.9427

BRISQUE 0.0441 0.0185 0.0088 0.0418 0.0535 0.0359

CurveletlQM 0.9192 0.9495 0.9845 0.9517 0.8997 0.9271

CurveletiQM 0.0481 0.0319 0.0163 0.0317 0.0689 0.0395

ShearletlQM 0.9308 0.9706 0.9809 0.9554 0.9010 0.9378

ShearletilQM 0.0398 0.0131 0.0122 0.0220 0.0582 0.0361

F 2. 1,000 SEHAES| LCC kel EZEMHA
Table 2. Standard deviation of LCC values across 1,000 train-test

JP2K  JPEG GWN GBLUR FF ALL

PSNR 0.0729 0.0566 0.0197 0.1091 0.0532 0.0577

SSIM 0.0502 0.0365 0.0151 0.0855 0.0329 0.0528

VIF 0.0350 0.0102 0.0122 0.0193 0.0302 0.0216

BlQI 0.0885 0.0422 0.0128 0.0966 0.1202 0.0787

DIIVINE  0.0400 0.0254 0.0044 0.0411 0.0691 0.0398

BLIINDSII  0.0395 0.0219 0.0136 0.0512 0.0655 0.0387

BRISQUE 0.0428 0.0173 0.0054 0.0352 0.0568 0.0278

CurveletlQM 0.0465 0.0302 0.0081 0.0285 0.0669 0.0344

ShearletiQM 0.0382 0.0092 0.0078 0.0188 0.0598 0.0298

E 3. 1,000 SLHAES| SROCC Zte| miC|o
Table 3. Median SROCC comparison across 1,000 train-test

JP2K  JPEG GWN GBLUR FF ALL

PSNR 0.8520 0.8781 0.9086 0.7896 0.8332 0.8542

SSIM 0.9022 0.8950 0.9449 0.8909 0.9122 0.8846

VIF 0.9309 0.9523 0.9748 0.9487 0.9251 0.9489

BlQI 0.7989 0.8923 0.9755 0.8352 0.7103 0.8156

DIVINE 09119 0.9295 0.9812 0.9364 0.8612 0.9062

BLINDSII  0.9325 0.9413 0.9485 0.8912 0.8552 0.9156

BRISQUE 0.9165 0.9511 0.9779 0.9503 0.8788 0.9371

CurveletiQM 0.9021 0.9344 0.9745 0.9461 0.8612 0.9165

ShearletlQM has higher LCC and SROCC values than
PSNR and SSIM in all distortion types. Also, the overall
performance of the VIF is the highest among all methods
and the proposed IQM is competitive with VIF in five dis-
tortion types.

ShearletlQM delivers superior overall performance than
BIQIL, DIIVINE, BLIINDS II and CurveletlQM. Compared
to DIIVINE and CurveletlQM that are based on wavelet
and curvelet transforms, respectively, the ShearletiQM ach-
ieves higher performance in all distortion types except in
GWN that shows slightly inferior performance. Also, the
ShearletIQM is highly competitive with BRISQUE across
different distortion types. For JPEG and GBlur distortion
types, ShealetlQM outperforms all NR IQMs.

To compare the computational time, the original Matlab
code of each NR IQM algorithm is executed on bikes with

E 5 Hw 2ol AISRE H|w

Table 5. Comparison between time complexity of different methods

ShearletlQM 0.9155 0.9531 0.9719 0.9506 0.8771 0.9253

Method Time (s)
DIIVINE 26.82
BLIINDS I 123.66
BRISQUE 0.22
CurveletiQM 142
ShearletiQM 0.95
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resolution of 768x512. The processing time of the methods
is tabulated in Table 5. The time complexity of Shearlet-
IQM is quite reasonable and the algorithm is faster than
other methods except BRISQUE.

Vil. Conclusion

A novel NR image quality assessment method was pro-
posed based on the feature extraction from statistical prop-
erties of natural images in shearlet domain. A complex ver-
sion of shearlet transform is employed to capture the fea-
tures from both real- and complex-valued shearlet co-
efficients. Experimental results show that the ShearletlQM
outperforms several state-of-art NR IQMs such as BIQI,
DIIVINE, BLIINDS II and CurveletiQM in various dis-
tortion types. Also, it has comparable results with BRISQUE.
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