• 제목/요약/키워드: Shearing load

검색결과 87건 처리시간 0.023초

연약지반에서의 교대변위를 고려한 EPS공법의 적용사례 연구 (A Case Study on the Application of EPS Construction Method Considering Abutment Displacement in Soft Ground)

  • 강희준;오일록;채영수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.698-705
    • /
    • 2004
  • Application of structural load on soft ground can cause lateral movement as well as ground break due to pressing and shearing of ground. Especially, abutment supported by pile foundation can make pile deformed due to lateral movement of ground in order to have harmful effect on structure. According to the result of this study, it is required to consider disturbance of weak soil layer when using lateral movement countermeasure method by EPS construction method as a result of performing study on safety review and EPS construction method with respect to this based on site where lateral movement occurs due to backside soil filling load at bridge abutment installed on weak ground, and it is required to sufficiently consider soil reduction during design of EPS construction method due to lateral movement deformation of soft clay layer by losing ground horizontal resistance force due to plasticity of ground around pile as well as combination part damage with pile head and expansion foundation.

  • PDF

A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load

  • Daouadji, Tahar Hassaine;Benferhat, Rabia;Adim, Belkacem
    • Advances in materials Research
    • /
    • 제5권2호
    • /
    • pp.107-120
    • /
    • 2016
  • The static analysis of the simply supported functionally graded plate under transverse load by using a new sinusoidal shear deformation theory based on the neutral surface concept is investigated analytically in the present paper. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. The mechanical properties of the FGM plate are assumed to vary continuously through the thickness according to a power law formulation except Poisson's ratio, which is kept constant. The equilibrium and stability equations are derived by employing the principle of virtual work. Results are provided for thick to thin plates and for different values of the gradient index k, which subjected to sinusoidal or uniformly distributed lateral loads. The accuracy of the present results is verified by comparing it with finite element solution. From the obtained results, it can be concluded that the proposed theory is accurate and efficient in predicting the displacements and stresses of functionally graded plates.

함수량이 다른 오염지반의 측방유동압 산정에 관한 연구 (A Study on the Calculation of Lateral Flow Pressure of Polluted Soils with Various Water Contents)

  • 안종필;박경호
    • 지질공학
    • /
    • 제12권1호
    • /
    • pp.75-88
    • /
    • 2002
  • 오염된 연약지반에 편재하중이 작용하게 되면 지반 중에 침하, 측방변위, 융기 및 전단파괴 등의 큰 소성 전단변형이 발생하게 되고, 때로는 지반과 구조물에 막대한 손상을 초래하게 된다. 따라서 본 연구는 오염된 연약지반의 식내모형실험을 실시하였으며 측방유동압의 결정방법을 기존의 이론식과 비교하여 분석하였다. 모형실험은 먼저 모형재하장치를 제작하고 토조 안에 오염된 지반시료를 채워 비배수상태에서 하중을 인정한 시간 간격으로 재하하여 변형상태를 관측하였다. 그 결과 편재 하중을 받는 오염된 연약지반에서의 측방유동압은 P=K$_{0}$YH식에 의해서 산정함이 비교적 적절하며, 측방유동압의 최대값은 토층두께(H)의 0.3H 부근에서 발생하였다. 또한 종합형과 Poulos의 분포형태 및 오염되지 않는 연약점토(CL, CH) 지반보다 지표면측으로 상승하여 발생하였다.

Pressure loading, end- shortening and through- thickness shearing effects on geometrically nonlinear response of composite laminated plates using higher order finite strip method

  • Sherafat, Mohammad H.;Ghannadpour, Seyyed Amir M.;Ovesy, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • 제45권5호
    • /
    • pp.677-691
    • /
    • 2013
  • A semi-analytical finite strip method is developed for analyzing the post-buckling behavior of rectangular composite laminated plates of arbitrary lay-up subjected to progressive end-shortening in their plane and to normal pressure loading. In this method, all the displacements are postulated by the appropriate harmonic shape functions in the longitudinal direction and polynomial interpolation functions in the transverse direction. Thin or thick plates are assumed and correspondingly the Classical Plate Theory (CPT) or Higher Order Plate Theory (HOPT) is applied. The in-plane transverse deflection is allowed at the loaded ends of the plate, whilst the same deflection at the unloaded edges is either allowed to occur or completely restrained. Geometric non-linearity is introduced in the strain-displacement equations in the manner of the von-Karman assumptions. The formulations of the finite strip methods are based on the concept of the principle of the minimum potential energy. The Newton-Raphson method is used to solve the non-linear equilibrium equations. A number of applications involving isotropic plates, symmetric and unsymmetric cross-ply laminates are described to investigate the through-thickness shearing effects as well as the effect of pressure loading, end-shortening and boundary conditions. The study of the results has revealed that the response of the composite laminated plates is particularly influenced by the application of the Higher Order Plate Theory (HOPT) and normal pressure loading. In the relatively thick plates, the HOPT results have more accuracy than CPT.

Study on strength of reinforced concrete filled circular steel tubular columns

  • Hua, Wei;Wang, Hai-Jun;Hasegawa, Akira;Shioi, Yukitake;Iwasaki, Shoji;Miyamoto, Yutaka
    • Structural Engineering and Mechanics
    • /
    • 제19권6호
    • /
    • pp.653-677
    • /
    • 2005
  • Concrete filled steel tubular columns (CFT) are widely used in civil engineering works, especially in large scale of works because of high strength, deformation, toughness and so on. On the other hand, as a kind of strengthening measure for seriously damaged reinforced concrete piers of viaduct in Hansin-Awaji earthquake of Japan in 1995, reinforced concrete piers were wrapped with steel plate. Then, a new kind of structure appeared, that is, reinforced concrete filled steel tubular column (RCFT). In this paper, compression test and bending-shearing test on RCFT are carried out. The main parameters of experiments are (1) strength of concrete, (2) steel tube with or without rib, (3) width-thickness ratio and (4) arrangement of reinforcing bars. According to the experimental results, the effect of parameters on mechanical characteristics of RCFT is analyzed clearly. At the same time, strength evaluation formula for RCFT column is proposed and tested by experimental results and existed recommendations (AIJ 1997). The strength calculated by the proposal formula is in good agreement with test result. As a result, the proposed evaluation formula can evaluate the strength of RCFT column properly.

Vibration analysis of prestressed concrete bridge subjected to moving vehicles

  • Huang, M.;Liu, J.K.;Law, S.S.;Lu, Z.R.
    • Interaction and multiscale mechanics
    • /
    • 제4권4호
    • /
    • pp.273-289
    • /
    • 2011
  • The vibration response of the bridges under the moving vehicular load is of importance for engineers to estimate the serviceability of existing bridges and to design new bridges. This paper deals with the three dimensional vibration analysis of prestressed concrete bridges under moving vehicles. The prestressed bridges are modeled by four-node isoparametric flat shell elements with the transverse shearing deformation taken into account. The usual five degrees-of-freedom (DOFs) per node of the element are appended with a drilling DOF to accommodate the transformation of the local stiffness and mass matrices to the global coordinates. The vehicle is modeled as a single or two-DOF system. A single-span prestressed Tee beam and two-span prestressed box-girder bridge are studied as the two numerical examples. The effects of prestress forces on the natural frequencies and dynamic responses of the bridges are investigated.

점용접 조건에 의한 연강의 미세조직 및 기계적특성에 관한 연구 (The Study on Microstructures and Mechanical Properties of Mild Steel Joined with Various Spot Welding Conditions)

  • 강연철;김대영;김완기;김석원
    • Journal of Welding and Joining
    • /
    • 제18권1호
    • /
    • pp.52-58
    • /
    • 2000
  • Spot welding, namely a kind of electric resisting welding has been used widely in field of automobile and aircraft industries because of easiness to apply. Specimens used in this study was a mild steel of 1.2mm thickness and the electrode was a Cu-Cr alloy of 6mm diameter. The surface sheared of specimens after testing of tensile shear was observed by SEM(scanning electron microscope) after ultrasonic cleaning for 10min., and microstructures and grain size of all specimens were measured with using of O.M.(Optical microscope). By the means of measurement and observations of tensile shear load, fatigue strength and share surface, the weldability of spot welding was evaluated. When tensile shearing testing, fracture starting point in all specimens was took place at the bond between HAZ(Heat affected zone) and nugget. With increasing in number of layers, fatigue strength was decreased. With increasing in electric current, grain size in the HAZ became more fine.

  • PDF

보 단부 부착시험체에 의한 높은마디 철근의 부착성능 (Evaluate Bond strength of high Relative Rib Area Bars Using Beam-end test specimens)

  • 서동민;양승열;홍기섭;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.112-115
    • /
    • 2004
  • Bond between reinforcing bar and surrounding concrete is supposed to transfer load safely in the process of design of reinforced concrete structures. Bond failure of reinforcing bar generally take place by splitting of the concrete cover as bond force between concrete and reinforcing bars exceeds the confinement of the concrete cover and reinforcement. However, the confinement force has a limitation. Thus, the only variable is the bearing angle corresponding to the change of bond force. Higher rib height bars possessing higher shearing resistance can maintain higher bearing angle and higher splitting resistance when bars are highly confined, and consequently higher bond strength, than lower rib higher bars. In this study, from the evaluate bond strength of high Relative Rib Area Bars Using beam-end test specimens are compared with the current provisions for development of reinforcement, and the improved design method of bond strength is proposed.

  • PDF

농촌지역의 조적조 건축물의 내진성능 개선을 위한 구조적 보강법 제안에 관한 연구 (A Study on Structural reinforcement suggestions for improvement of Seismic Performance of Masonry Buildings in rural areas)

  • 이덕용;김일중
    • 한국농촌건축학회논문집
    • /
    • 제15권4호
    • /
    • pp.51-58
    • /
    • 2013
  • This study Masonry Buildings in rural areas, due to the lateral load resistance for seismic reinforcement method is proposed. Some of the proposed methods for reinforcement directly through finite element analysis to evaluate the change in frequency. The results for the following: This paper has the object of investigating natural frequencies of opening thick plates on Pasternak foundation by means of finite element method and providing Kinematic design data for mat of building structures. In this paper, vibration analysis of rectangular opening thick plate is done by use of Serendipity finite element with 8 nodes by considering shearing strain of plate. It is shown that natrural frequencies depend on not only Winkler foundation parameter but also shear foundation parameter, opening position.

Cyclic behavior of various sands and structural materials interfaces

  • Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • 제10권1호
    • /
    • pp.1-19
    • /
    • 2016
  • This paper presents the results of an intensive experimental investigation on cyclic behavior of various sands and structural materials interface. Comprehensive measurements of the horizontal displacement and shear stresses developed during testing were performed using an automated constant normal load (CNL) cyclic direct shear test apparatus. Two different particle sizes (0.5 mm-0.25 mm and, 2.0 mm-1.0 mm) of sands having distinct shapes (rounded and angular) were tested in a cyclic direct shear testing apparatus at two vertical stress levels (${\sigma}=50kPa$, and 100 kPa) and two rates of displacement ($R_D=2.0mm/min$, and 0.025 mm/min) against various structural materials (i.e., steel, concrete, and wood). The cyclic direct shear tests performed during this investigation indicate that (i) the shear stresses developed during shearing highly depend on both the shape and size of sand grains; (ii) characteristics of the structural materials are closely related to interface response; and (iii) the rate of displacement is slightly effective on the results.