• Title/Summary/Keyword: Shearing Effects

Search Result 117, Processing Time 0.025 seconds

A Study on the 3-D Surface Effects of Fashion Design (패션디자인의 입체적(立體的) 표면효과(表面效果)에 관(關)한 연구(硏究))

  • Kim, Ji-Young;Cho, Kyu-Hwa
    • Journal of Fashion Business
    • /
    • v.9 no.1
    • /
    • pp.1-20
    • /
    • 2005
  • This study is purposed to provide new idea for developing high value added fashion goods by studying relief effects of fashion design. Based on prior researches, various ways to give relief effects were searched and then modern fashion design cases were looked for which were referred to fashion-related magazines and collection-related internet sites since the late 1990s. The ways for relief effects are weaving, industrial finishing, sewing technique. Weaving techniques are about fancy yarns, variation of weaving structure, pile weave. Industrial finishing techniques which can make relief effects are embossing, heat-setting, shearing, pliss, burn out, flocking. Sewing techniques are quilting, pleats, embroidery, slash, attachment in accordance with the way to produce relief effects. The forms of relief effects are tactile pattern that cannot be seen in the distance, subtle relief pattern which is more three-dimensional than tactile pattern, rhythmical relief pattern, sculptural pattern, and deep-volumed pattern. The present research can provide practical data for design by studying techniques of relief effects and collecting and arranging design cases that have been sporadically carried out. The study on relief and unique surface effects can be a way to effectively stimulate and express emotions of modern people with various taste and individuality.

Pressure loading, end- shortening and through- thickness shearing effects on geometrically nonlinear response of composite laminated plates using higher order finite strip method

  • Sherafat, Mohammad H.;Ghannadpour, Seyyed Amir M.;Ovesy, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.677-691
    • /
    • 2013
  • A semi-analytical finite strip method is developed for analyzing the post-buckling behavior of rectangular composite laminated plates of arbitrary lay-up subjected to progressive end-shortening in their plane and to normal pressure loading. In this method, all the displacements are postulated by the appropriate harmonic shape functions in the longitudinal direction and polynomial interpolation functions in the transverse direction. Thin or thick plates are assumed and correspondingly the Classical Plate Theory (CPT) or Higher Order Plate Theory (HOPT) is applied. The in-plane transverse deflection is allowed at the loaded ends of the plate, whilst the same deflection at the unloaded edges is either allowed to occur or completely restrained. Geometric non-linearity is introduced in the strain-displacement equations in the manner of the von-Karman assumptions. The formulations of the finite strip methods are based on the concept of the principle of the minimum potential energy. The Newton-Raphson method is used to solve the non-linear equilibrium equations. A number of applications involving isotropic plates, symmetric and unsymmetric cross-ply laminates are described to investigate the through-thickness shearing effects as well as the effect of pressure loading, end-shortening and boundary conditions. The study of the results has revealed that the response of the composite laminated plates is particularly influenced by the application of the Higher Order Plate Theory (HOPT) and normal pressure loading. In the relatively thick plates, the HOPT results have more accuracy than CPT.

Off-road tractive performance of tracked vehicles and the effects of soil parameters (궤도차량의 야지기동성 평가와 토지특성의 영향)

  • 김진우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.76-84
    • /
    • 1991
  • The off-road tractive performance of tracked vehicles can be evaluated in terms of soil thrust, motion resistance and drawbar pull. The ability to predict accurately ground pressure distribution under track is of importance since the vehicle sinkage and motion resistance are closely related to it. While the formulation of the method for predicting ground pressure distribution follows closely in spirit the ideas outlined for the terrain with linear pressure- sinkage relation case by Garber and Wong, the analysis of various terrain stiffness is magnified by numerical implementation procedure. The effects of soil parameters on tractive forces can be introduced through the terrain-track interaction such as pressure-sinkage and shearing characteristics. It is illustrated by determining the drawber pull-slip relation and corresponding ground pressure distribution for the terrains typically chosen and by comparing the results with the conventional ones based on normal ground pressure. The factorial experiment method is finally adopted for checking the sensitivity of the values of soil parameters on the drawbar pull.

  • PDF

Orthokinetic Stability of $\beta$-Lactoglubulin-Stabilized Emulsions : Effects of Protein Heat Treatment and Surfactant Addition

  • Hong, Soon-Taek
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.2
    • /
    • pp.133-142
    • /
    • 1998
  • Effects of protein heat treatment and surfactant additionoo the orthokindetic stability of $\beta$-lactoglobulin-stabilized emulsions have been investigated under turbulent flow conditions. In studies on protein-stabilized emulsions, samples which had been subjected to heat treatment(i.e. the protein solution orthe emulsion) have been found to be more prone to orthokinetic coalescene than the untreated ones. The emulsions stabilized with protein heated above the denaturation temperature(i.e. 7$0^{\circ}C$) showed the bigger initial average droplet size, which resulted in an increased orthokinetic coalescenece rate. The storage of the protein-stabilized emulsion at high temperature prior to the shearing experiment also made the emulsion less stable in the shear field. Interestingly. the addition of DATEM has been found to produce a substantial increase in orthokinetic stability of the heat-denatured protein-stabilized emulsion system, although Tween 20 is the opposite case.

  • PDF

A Study on Buckling Characteristics of 2-way Grid Single-Layer Domes Considering Rigidity-Effect of Roofing Covering Materials (지붕마감재 강성효과를 고려한 2방향 그리드 단층돔의 좌굴특성에 관한 연구)

  • Park, Sang-Hoon;Suk, Chang-Mok;Jung, Hwan-Mok;Kwon, Young-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.85-92
    • /
    • 2002
  • Two way grid single-layer domes are of great advantage in fabrication and construction because of the simple fact that they have only four members at each junction. But, from a point of view of mechanics, the rectangular latticed pattern gives rise to a nonuniform rigidity-distribution in the circumferential direction. If the equivalent rigidity is considered in the axial direction of members, the in-plane equivalent shearing rigidity depends only on the in-plane bending rigidity of members and its value is very small in comparison to that of the in-plane equivalent stretching rigidity. It has a tendency to decrease buckling -strength of dome considerably by external force. But it is possible to increase buckling strength by the use of roofing covering materials connected to framework. In a case like this, shearing rigidity of roofing material increases buckling strength of the overall structure and can be designed economically from the viewpoint of practice. Therefore, the purpose of this paper, in Lamella dome and rectangular latticed dome that are a set of 2-way grid dome, is to clarify the effects of roofing covering materials for increasing of buckling strength of overall dome. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems. The conclusion were given as follows: 1. In case of Lamella domes which have nearly equal rigidity in the direction of circumference, the rigidity of roofing covering materials does not have a great influence on buckling-strength, but in rectangular latticed domes that has a clear periodicity of rigidity, the value of its buckling strength has a tendency to increase considerably with increasing rigidity of roofing covering materials 2. In case of rectangular latticed domes, as rise-span-ratio increases, models which is subjected to pressure -type-uniform loading than vertical-type-uniform loading are higher in the aspects of the increasing rate of buckling- strength according to the rate of shear reinforcement rigidity, but in case of Lamella dome, the condition of loading and rise-span-ratio do not have a great influence on the increasing rate of buckling strength according to the rate of shear reinforcement rigidity.

  • PDF

A Study on the Blanking Characteristic of Anti- Vibration Sheet Metal (제진 강판의 블랭킹가공 특성에 관한 연구)

  • Lee K. B.;Lee Y. G.;Kim J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.29-34
    • /
    • 2003
  • In order to study the shearing characteristics of anti-vibration sheet metal which has been bonded by resin, a blanking die of 40.02mm was manufactured to blank a material and it is used to reduce vibrational noise. The variables employed in this study were 1) Clearance 2) types of stripper plate, and 3) types of the die design technique. These variables were used to study the effects on burr height, diameter of product, and camber height. Lastly, the effect of the position of the rubber during blanking was observed. In the case of burr height from experimental investigation, the push-back die, combined with a movable stripper plate, resulted in the concentration of additional pressure between the cutting edges, meaning the crack initiation was delayed. This result was not affected by lubrication, although appropriate lubrication is preferred to enable a longer lasting die in terms of wear, which results from the presence of adhesive as the sheet metal is blanked. In the comparison of diameter measurement, the push-back die, combined with the back pressure from the knock-out plate showed a favorable precision. The use of the push back die with a fixed stripper plate, with a $4.5\%$ clearance, showed better accuracy in the diameter measurement. For comparing camber height, the push back die resulted in less cambering than the drop-through die. Also, the larger the clearance, the greater was the camber height. Considering experimental results, the shearing of anti-vibrational sheet metal is best achieved when the rubber is laying on the top, blanked with a fixed-stripper plate in a push-back die, with a $4.5\%$ clearance.

  • PDF

Vibration analysis of prestressed concrete bridge subjected to moving vehicles

  • Huang, M.;Liu, J.K.;Law, S.S.;Lu, Z.R.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.273-289
    • /
    • 2011
  • The vibration response of the bridges under the moving vehicular load is of importance for engineers to estimate the serviceability of existing bridges and to design new bridges. This paper deals with the three dimensional vibration analysis of prestressed concrete bridges under moving vehicles. The prestressed bridges are modeled by four-node isoparametric flat shell elements with the transverse shearing deformation taken into account. The usual five degrees-of-freedom (DOFs) per node of the element are appended with a drilling DOF to accommodate the transformation of the local stiffness and mass matrices to the global coordinates. The vehicle is modeled as a single or two-DOF system. A single-span prestressed Tee beam and two-span prestressed box-girder bridge are studied as the two numerical examples. The effects of prestress forces on the natural frequencies and dynamic responses of the bridges are investigated.

Neuropsychiatric Aspect of Traumatic Brain Injury (두부외상의 신경정신과적 관점)

  • Kim, Young Chul
    • Korean Journal of Biological Psychiatry
    • /
    • v.2 no.2
    • /
    • pp.157-168
    • /
    • 1995
  • The neuropsychiatric sequelae of traumatic brain unjury(TBI) are effects on complex aspect of behavior, cognition and emotional expression. They include psychiatric disorders such as depression, psychosis, personality change, dementia, and postconcussion syndrome. The damage is done not only to the cortex of the brain but also to subcortical and axial structures. The diffuse degeneration of cerebral white mailer is axonal damage that is caused by mechanical forces shearing the neuronal fiber at the moment of impact(diffuse axonal injury, DAI). The DAI and the changed receptor-agonist mechanism ore the most important mechanisms in genesis of neuropsychiatric sequalae by mild TBI. The most important instrument for diagnosis of neuropsychiatric sequalae of TBI is a physician or psychiatrist with experience and knowledge. The most effective therapeutic tool is a professional who understands the nature of the problem.

  • PDF

The effects of consolidation time on the strength and failure behavior of freshwater ice rubble

  • Shayanfar, Hamid;Bailey, Eleanor;Pritchett, Robert;Taylor, Rocky
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.403-412
    • /
    • 2018
  • Medium-scale tests were conducted to measure and observe the strength and failure behavior of freshwater ice rubble. A custom box measuring $3.05m{\times}0.94m{\times}0.94m$, with Plexiglas walls was built so that failure mechanisms could be observed. Ice rubble beams of nominal thickness 50 cm were produced by placing randomly sized ice pieces into the box filled with water at its freezing temperature. After the specified consolidation time, ranging between 0.2 and 70.5 h, the ice rubble beam was deformed by pushing a platen vertically downwards though the center of the beam until failure. For consolidation times less than 4 h, the ice beam failed progressively and tended to fail by shearing on macroscopic scale. At times greater than 4 h the beam failed by bending. The change in failure behaviour has been attributed to the degree of bonding between ice blocks.

Dynamic Deformation Characteristics of Fiber Reinforced Soils Using Resonant Column Tests (공진주 시험을 이용한 섬유보강토의 동적변형특성)

  • Chang, Pyoung-Wuck;Heo, Joon;Park, Young-Kon;Cha, Kyung-Seob;Woo, Chull-Woong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.349-352
    • /
    • 2002
  • In this paper, dynamic properties of fiber reinforced soils were investigated at shearing strains between $10^{-4}%\;and\;10^{-1}%$ using resonant column test. Resonant column test has been widely used as a primary laboratory testing technique in investigating dynamic soil properties expressed in term of shear modulus and material damping. At strains above elastic threshold, the variations of shear modulus(G) and damping ratio(D) were investigated. Based on test results, the small strain shear modulus($G_{max}$) and damping ratio($D_{min}$) were determined and the effects of confinement on $G_{max}$ and $D_{min}$ were characterized.

  • PDF