• Title/Summary/Keyword: Shear-wave elasticity imaging

Search Result 13, Processing Time 0.024 seconds

Shear-wave elasticity imaging with axial sub-Nyquist sampling (축방향 서브 나이퀴스트 샘플링 기반의 횡탄성 영상 기법)

  • Woojin Oh;Heechul Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.403-411
    • /
    • 2023
  • Functional ultrasound imaging, such as elasticity imaging and micro-blood flow Doppler imaging, enhances diagnostic capability by providing useful mechanical and functional information about tissues. However, the implementation of functional ultrasound imaging poses limitations such as the storage of vast amounts of data in Radio Frequency (RF) data acquisition and processing. In this paper, we propose a sub-Nyquist approach that reduces the amount of acquired axial samples for efficient shear-wave elasticity imaging. The proposed method acquires data at a sampling rate one-third lower than the conventional Nyquist sampling rate and tracks shear-wave signals through RF signals reconstructed using band-pass filtering-based interpolation. In this approach, the RF signal is assumed to have a fractional bandwidth of 67 %. To validate the approach, we reconstruct the shear-wave velocity images using shear-wave tracking data obtained by conventional and proposed approaches, and compare the group velocity, contrast-to-noise ratio, and structural similarity index measurement. We qualitatively and quantitatively demonstrate the potential of sub-Nyquist sampling-based shear-wave elasticity imaging, indicating that our approach could be practically useful in three-dimensional shear-wave elasticity imaging, where a massive amount of ultrasound data is required.

Medical Ultrasonic Elasticity Imaging Techniques (의료용 초음파탄성영상법)

  • Jeong, Mok-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.573-584
    • /
    • 2012
  • Breast and prostate tumors or cancers tend to be stiffer than the surrounding normal tissue. However, the difference in echogenicity between cancerous and normal tissues is not clearly distinguishable in ultrasound B-mode imaging. Thus, imaging the stiffness contrast between the two different tissue types helps to diagnose lesions quantitatively, and such a method of imaging the elasticity of human tissue is termed ultrasound elasticity imaging. Recently, elasticity imaging has become an effective complementary diagnostic modality along with ultrasound B-mode imaging. This paper presents various elasticity imaging methods that have been reported up to now and describes their characteristics and principles of operation.

Analysis of Liver Elasticity according to Ultrasound Findings (초음파 소견에 따른 간 탄성도 분석)

  • Chun, Hye-Ri;Jang, Hyon-Chol;Cho, Pyong-Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.883-889
    • /
    • 2021
  • This study was conducted on 101 patients who visited hospital for abdominal ultrasonography from May 2020 to December 2020. The purpose of this study was to find out the elasticity according to the ultrasound images (echo pattern, splenomegaly, hepatitis) during the ultrasound examination using the shear wave elastography. The shear wave elastography value of the normal group of the echo pattern was 5.75±1.58 kPa, and the group with the abnormal echo pattern was 8.84±4.94 kPa, and the shear wave elastography value of the abnormal group was high (p<0.05). In normal spleen size, hepatic elasticity value was 6.33±2.54 kPa, and hepatic elasticity value of splenomegaly was 13.73±5.48 kPa. In the case of splenomegaly, the liver elasticity value was high, and there was a statistically significant difference (p<0.05). As the spleen size increased, the liver elasticity value increased by 1.485 times, and as hepatitis progressed, the liver elasticity value increased by 1.573 times (p<0.05). As a result of analysis of concordance between ultrasound imaging findings and shear wave elastography, the Kappa value was found to be as high as 0.922 (p<0.05), which showed high concordance between the two test methods. Additional comparisons of liver elasticity values in shearwave elastography tests along with liver ultrasound findings are thought to be of great help in diagnosing liver fibrosis.

Age-related change in shear elastic modulus of the thoracolumbar multifidus muscle in healthy Beagle dogs using ultrasound shear wave elastography

  • Tokunaga, Akari;Shimizu, Miki
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.3.1-3.13
    • /
    • 2021
  • Background: Multifidus muscle stiffness decreases in patients with lumbar intervertebral disk herniation; however, age-related changes in humans have not been reported. Objectives: The reliability of ultrasound shear wave elastography in dogs, and changes in the shear elastic modulus of the thoracolumbar multifidus muscle with aging in dogs, were investigated. Methods: Twelve beagle dogs were divided into 2 groups based on the age of onset of intervertebral disk herniation: young (aged not exceeding 2 years; 1.3 ± 0.6 years old, n = 5) and adult (4.9 ± 1.2 years old, n = 7). The shear elastic modulus of the multifidus muscle, from the thirteenth thoracic spine to the fourth lumbar spine, was measured using ultrasound shear wave elastography. The length, cross-sectional area and muscle to fat ratio of the multifidus muscle, and the grade of intervertebral disk degeneration, were assessed using radiographic and magnetic resonance imaging examinations. Results: The length and cross-sectional area of the multifidus muscle increased caudally. In the young group, the shear elastic modulus of the multifidus muscle of the thirteenth thoracic spine was less than that of the third lumbar spine. In the adult group, the shear elastic modulus of the multifidus muscle of first and third lumbar spine was lower than that of the same site in the young group. Conclusions: Ultrasound can be used to measure shear wave elastography of the thoracolumbar multifidus in dogs. If the multifidus muscle stiffness decreases, we should consider age-related change.

Usefulness of shear wave elastography in the diagnosis of oral and maxillofacial diseases

  • Ogura, Ichiro;Nakahara, Ken;Sasaki, Yoshihiko;Sue, Mikiko;Oda, Takaaki
    • Imaging Science in Dentistry
    • /
    • v.48 no.3
    • /
    • pp.161-165
    • /
    • 2018
  • Purpose: To evaluate the usefulness of shear wave elastography in the diagnosis of oral and maxillofacial diseases. Materials and Methods: Ten patients with oral and maxillofacial diseases and 28 volunteers drawn from our student doctors were examined by shear wave elastography with a 14-MHz linear transducer using an Aplio 300 apparatus (Canon Medical Systems, Otawara, Japan). A statistical analysis of the shear elastic modulus(kPa) of healthy tissue (the sublingual gland, submandibular gland, anterior belly of the digastric muscle, and geniohyoid muscle) in the 28 volunteers was performed using 1-way repeated measures analysis of variance with the Tukey honest significant difference test. The maximum shear elastic modulus(kPa) of 8 patients with squamous cell carcinoma (SCC) and 2 patients with benign lesions was evaluated with the Mann-Whitney U test. The analysis used a 5% significance level. Results: The mean shear elastic modulus of the sublingual gland ($9.4{\pm}3.7kPa$) was lower than that of the geniohyoid muscle ($19.2{\pm}9.2kPa$, P=.000) and the anterior belly of the digastric muscle ($15.3{\pm}6.1kPa$, P=.004). The maximum shear elastic modulus of the SCCs($109.6{\pm}14.4kPa$) was higher than that of the benign lesions($46.4{\pm}26.8kPa$, P=.044). Conclusion: Our results demonstrated the usefulness of shear wave elastography in the diagnosis of oral and maxillofacial diseases. Shear wave elastography has the potential to be an effective technique for the objective and quantitative diagnosis of oral and maxillofacial diseases.

Combination of Quantitative Parameters of Shear Wave Elastography and Superb Microvascular Imaging to Evaluate Breast Masses

  • Eun Ji Lee;Yun-Woo Chang
    • Korean Journal of Radiology
    • /
    • v.21 no.9
    • /
    • pp.1045-1054
    • /
    • 2020
  • Objective: This study aimed to evaluate the diagnostic value of combining the quantitative parameters of shear wave elastography (SWE) and superb microvascular imaging (SMI) to breast ultrasound (US) to differentiate between benign and malignant breast masses. Materials and Methods: A total of 200 pathologically confirmed breast lesions in 192 patients were retrospectively reviewed using breast US with B-mode imaging, SWE, and SMI. Breast masses were assessed based on the breast imaging reporting and data system (BI-RADS) and quantitative parameters using the maximum elasticity (Emax) and ratio (Eratio) in SWE and the vascular index in SMI (SMIVI). The area under the receiver operating characteristic curve (AUC) value, sensitivity, specificity, accuracy, negative predictive value, and positive predictive value of B-mode alone versus the combination of B-mode US with SWE or SMI of both parameters in differentiating between benign and malignant breast masses was compared, respectively. Hypothetical performances of selective downgrading of BI-RADS category 4a (set 1) and both upgrading of category 3 and downgrading of category 4a (set 2) were calculated. Results: Emax with a cutoff value of 86.45 kPa had the highest AUC value compared to Eratio of 3.57 or SMIVI of 3.35%. In set 1, the combination of B-mode with Emax or SMIVI had a significantly higher AUC value (0.829 and 0.778, respectively) than B-mode alone (0.719) (p < 0.001 and p = 0.047, respectively). B-mode US with the addition of Emax, Eratio, and SMIVI had the best diagnostic performance of AUC value (0.849). The accuracy and specificity increased significantly from 68.0% to 84.0% (p < 0.001) and from 46.1% to 79.1% (p < 0.001), respectively, and the sensitivity decreased from 97.6% to 90.6% without statistical loss (p = 0.199). Conclusion: Combining all quantitative values of SWE and SMI with B-mode US improved the diagnostic performance in differentiating between benign and malignant breast lesions.

Comparison of Shear Wave Elastography and Pathologic Results Using BI - RADS Category for Breast Mass (유방종괴에 대한 BI-RADS범주를 이용한 횡탄성 초음파와 병리결과 비교분석)

  • An, Hyun;Im, In-Chul
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.217-223
    • /
    • 2018
  • This study to search the diagnostic performance of shear wave elastography(SWE) in breast mass and to compare the biopsy result and stiffness obtained from shear wave elastography. Diagnostic breast ultrasonography and SWE were targeted for 157 patients who had breast ultrasonography was diagnosed mass from June 2017 to September 2017. Pathology results of 157 patients showed a benign 92 patients(Age, $44.54{\pm}11.84$) and a malignancy 65 patients(Age, $51.55{\pm}10.54$). Final evaluation, biopsy result, and quantitative SWE result were obtained and compared with each other according to Breast Imaging Reporting and Data System(BI-RADS) of diagnostic breast ultrasonography. Quantitative SWE value and pathologic result showed the highest diagnostic specificity of 83.70% in Emean and sensitivity of 89.23% in Emin. Quantitative SWE result and biopsy result is statistically significant.(p=0.000). The optimal cut-off value for malignant lesions was 66.3 kPa and 63.7 kPa, respectively, for the sensitivity, specificity, high maximum mean elasticity value(Emax) and mean elasticity value(Emean) and this showed the highest diagnostic area under the ROC curve(Az) value compared to other SWE measurement(p=0.000). The addition of SWE to conventional US in breast mass make a increase diagnostic specificity and reduce unnecessary biopsy. Therefore, it is expected that it will be helpful to analyze the breast mass using the above analysis and apparatus.

Technical Performance of Two-Dimensional Shear Wave Elastography for Measuring Liver Stiffness: A Systematic Review and Meta-Analysis

  • Dong Wook Kim;Chong Hyun Suh;Kyung Won Kim;Junhee Pyo;Chan Park;Seung Chai Jung
    • Korean Journal of Radiology
    • /
    • v.20 no.6
    • /
    • pp.880-893
    • /
    • 2019
  • Objective: To assess the technical performance of two-dimensional shear wave elastography (2D-SWE) for measuring liver stiffness. Materials and Methods: The Ovid-MEDLINE and EMBASE databases were searched for studies reporting the technical performance of 2D-SWE, including concerns with technical failures, unreliable measurements, interobserver reliability, and/or intraobserver reliability, published until June 30, 2018. The pooled proportion of technical failure and unreliable measurements was calculated using meta-analytic pooling via the random-effects model and inverse variance method for calculating weights. Subgroup analyses were performed to explore potential causes of heterogeneity. The pooled intraclass correlation coefficients (ICCs) for interobserver and intraobserver reliability were calculated using the Hedges-Olkin method with Fisher's Z transformation of the correlation coefficient. Results: The search yielded 34 articles. From 20 2D-SWE studies including 6196 patients, the pooled proportion of technical failure was 2.3% (95% confidence interval [CI], 1.3-3.9%). The pooled proportion of unreliable measurements from 20 studies including 6961 patients was 7.5% (95% CI, 4.7-11.7%). In the subgroup analyses, studies conducting more than three measurements showed fewer unreliable measurements than did those with three measurements or less, but no intergroup difference was found in technical failure. The pooled ICCs for interobserver reliability (from 10 studies including 517 patients) and intraobserver reliability (from 7 studies including 679 patients) were 0.87 (95% CI, 0.82-0.90) and 0.93 (95% CI, 0.89-0.95), respectively, suggesting good to excellent reliability. Conclusion: 2D-SWE shows good technical performance for assessing liver stiffness, with high technical success and reliability. Future studies should establish the quality criteria and optimal number of measurements.

Quantitative Analysis of Enlarged Cervical Lymph Nodes with Ultrasound Elastography

  • Zhang, Jun-Peng;Liu, Hua-Yan;Ning, Chun-Ping;Chong, Jing;Sun, Yong-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7291-7294
    • /
    • 2015
  • Purpsoe: To investigate the diagnostic value of quantitative analysis of a tissue diffusion and virtual touch tissue imaging quantification (VTIQ) technique with acoustic radiation force impulse (ARFI) elastography for assessing enlarged cervical lymph nodes. Materials and Methods: Fifty-six enlarged cervical lymph nodes confirmed by pathologic diagnoses were covered in the study. According to the results of pathologic diagnosis, patients were classified into benign and malignant groups. All the patients were examined by both conventional ultrasonography and elastography. AREA% and shear wave velocity (SWV) in ROI of different groups were calculated and compared using ROC curves. Cut-off points of AREA% and SWV were determined with receiver operating characteristic curves. Results: Final histopathological results revealed 21 cases of benign and 35 cases of malignant lymph nodes. The mean values of AREA% and SWV in benign and malignant groups were $45.0{\pm}17.9%$ and $2.32{\pm}0.57m/s$, and $61.3{\pm}21.29%$ and $4.36{\pm}1.25$)m/s, respectively. For the parameters of elastography, "AREA%" and SWV demonstrated significant differences between groups (p=0.002). AREA% was positively correlated with SWV with a correlation coefficient of 0.809 (P<0.001). Conclusions: Stiffness of different lymph node diseases in patients may differ. Elastography can evaluate changes sensitively and provide valuable information to doctors. The study proved that the VTIQ elastography technique can play an important role in differential diagnosis of lymph nodes.

Ultrasound imaging and guidance in the management of myofascial pain syndrome: a narrative review

  • Wei-Ting Wu;Ke-Vin Chang;Vincenzo Ricci;Levent Ozcakar
    • Journal of Yeungnam Medical Science
    • /
    • v.41 no.3
    • /
    • pp.179-187
    • /
    • 2024
  • Myofascial pain syndrome (MPS) is a common musculoskeletal disorder characterized by muscle pain, tenderness, and trigger points. Ultrasonography has emerged as a key tool for diagnosing and treating MPS owing to its ability to provide precise, minimally invasive guidance. This review discusses the use of ultrasonography in various approaches to evaluate and manage MPS. Studies have shown that shear-wave sonoelastography can effectively assess muscle elasticity and offer insights into trapezius stiffness in patients with MPS. Ultrasound-guided interfascial hydrodissection, especially with visual feedback, has demonstrated effectiveness in treating trapezius MPS. Similarly, ultrasound-guided rhomboid interfascial plane blocks and perimysium dissection for posterior shoulder MPS have significantly reduced pain and improved quality of life. The combination of extracorporeal shockwave therapy with ultrasound-guided lidocaine injections has been particularly successful in reducing pain and stiffness in trapezius MPS. Research regarding various guided injections, including dry needling, interfascial plane blocks, and fascial hydrodissection, emphasizes the importance of ultrasonography for accuracy and safety. Additionally, ultrasound-guided delivery of local anesthetics and steroids to the quadratus lumborum muscle has shown lasting pain relief over a 6-month period. Overall, these findings highlight the pivotal role of ultrasonography in the assessment and treatment of MPS.