• Title/Summary/Keyword: Shear-stress

Search Result 3,992, Processing Time 0.036 seconds

Stress concentration and deflection of simply supported box girder including shear lag effect

  • Yamaguchi, Eiki;Chaisomphob, Taweep;Sa-nguanmanasak, Jaturong;Lertsima, Chartree
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.207-220
    • /
    • 2008
  • The shear lag has been studied for many years. Nevertheless, existing research gives a variety of stress concentration factors. Unlike the elementary beam theory, the application of load is not unique in reality. For example, concentrated load can be applied as point load or distributed load along the height of the web. This non-uniqueness may be a reason for the discrepancy of the stress concentration factors in the existing studies. The finite element method has been often employed for studying the effect of the shear lag. However, not many researches have taken into account the influence of the finite element mesh on the shear lag phenomenon, although stress concentration can be quite sensitive to the mesh employed in the finite element analysis. This may be another source for the discrepancy of the stress concentration factors. It also needs to be noted that much less studies seem to have been conducted for the shear lag effect on deflection while some design codes have formulas. The present study investigates the shear lag effect in a simply supported box girder by the three-dimensional finite element method using shell elements. The whole girder is modeled by shell elements, and extensive parametric study with respect to the geometry of a box girder is carried out. Not only stress concentration but also deflection is computed. The effect of the way load is applied and the dependency of finite element mesh on the shear lag are carefully treated. Based on the numerical results thus obtained, empirical formulas are proposed to compute stress concentration and deflection that includes the shear lag effect.

Wall shear stress on vascular smooth muscle cells exerts angiogenic effects on extracranial arteriovenous malformations

  • Ryu, Jeong Yeop;Park, Tae Hyun;Lee, Joon Seok;Oh, Eun Jung;Kim, Hyun Mi;Lee, Seok-Jong;Lee, Jongmin;Lee, Sang Yub;Huh, Seung;Kim, Ji Yoon;Im, Saewon;Chung, Ho Yun
    • Archives of Plastic Surgery
    • /
    • v.49 no.1
    • /
    • pp.115-120
    • /
    • 2022
  • Background In addition to vascular endothelial cells, vascular smooth muscle cells (VSMCs) are subject to continuous shear stress because of blood circulation. The angiogenic properties of VSMCs in extracranial arteriovenous malformations (AVMs) may exceed those of normal blood vessels if the body responds more sensitively to mechanical stimuli. This study was performed to investigate the hypothesis that rapid angiogenesis may be achieved by mechanical shear stress. Methods VSMCs were obtained from six patients who had AVMs and six normal controls. The target genes were set to angiopoietin-2 (AGP2), aquaporin-1 (AQP1), and transforming growth factor-beta receptor 1 (TGFBR1). Reverse-transcriptase polymerase chain reaction (RT-PCR) and real-time PCR were implemented to identify the expression levels for target genes. Immunofluorescence was also conducted. Results Under the shear stress condition, mean relative quantity values of AGP2, AQP1, and TGFBR1 in AVM tissues were 1.927±0.528, 1.291±0.031, and 2.284±1.461 when compared with neutral conditions. The expression levels of all three genes in AVMs were higher than those in normal tissue except for AQP1 under shear stress conditions. Immunofluorescence also revealed increased staining of shear stress-induced genes in the normal tissue and in AVM tissue. Conclusions Shear stress made the VSMCs of AVMs more sensitive. Although the pathogenesis of AVMs remains unclear, our study showed that biomechanical stimulation imposed by shear stress may aggravate angiogenesis in AVMs.

Interpretational Consideration of Geosynthetics Shear Behaviors (지오신세틱스 전단거동의 해석학적 고찰)

  • Jeon, Han-Yong;Kim, Cho-Rong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.293-302
    • /
    • 2010
  • 2 types of geogrids and geotextiles was used to evaluate shear behaviors after installation damage test. Shear behaviors were compared after installation damage test and coefficient of resistance to direct sliding($f_{ds}$) was estimated by theoretical shear analysis. Shear strength of damaged geogrid decreased under high normal stress of 150kPa and shear strength of geotextile decreased with increasing normal stress. It is seen that $f_{ds}$ values after installation damage decreased than before installation damage through comparison calculated $f_{ds}$ by direct theoretical shear analysis. $f_{ds}$ values to be calculated by theoretical shear analysis were changed with before and after installation damage.

  • PDF

Effect of material mechanical differences on shear properties of contact zone composite samples: Experimental and numerical studies

  • Wang, Weiqi;Ye, Yicheng;Wang, Qihu;Liu, Xiaoyun;Yang, Fan;Tan, Wenkan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.153-162
    • /
    • 2020
  • Aiming at the mechanical and structural characteristics of the contact zone composite rock, the shear tests and numerical studies were carried out. The effects of the differences in mechanical properties of different materials and the normal stress on shear properties of contact zone composite samples were analyzed from a macro-meso level. The results show that the composite samples have high shear strength, and the interface of different materials has strong adhesion. The differences in mechanical properties of materials weakens the shear strength and increase the shear brittleness of the sample, while normal stress will inhibit these effect. Under low/high normal stress, the sample show two failure modes, at the meso-damage level: elastic-shearing-frictional sliding and elastic-extrusion wear. This is mainly controlled by the contact and friction state of the material after damage. The secondary failure of undulating structure under normal-shear stress is the nature of extrusion wear, which is positively correlated to the normal stress and the degree of difference in mechanical properties of different materials. The increase of the mechanical difference of the sample will enhance the shear brittleness under lower normal stress and the shear interaction under higher normal stress.

An experimental study on shear mechanical properties of clay-concrete interface with different roughness of contact surface

  • Yang, Wendong;Wang, Ling;Guo, Jingjing;Chen, Xuguang
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.39-50
    • /
    • 2020
  • In order to understand the shear mechanical properties of the interface between clay and structure and better serve the practical engineering projects, it is critical to conduct shear tests on the clay-structure interface. In this work, the direct shear test of clay-concrete slab with different joint roughness coefficient (JRC) of the interface and different normal stress is performed in the laboratory. Our experimental results show that (1) shear strength of the interface between clay and structure is greatly affected by the change of normal stress under the same condition of JRC and shear stress of the interface gradually increases with increasing normal stress; (2) there is a critical value JRCcr in the roughness coefficient of the interface; (3) the relationship between shear strength and normal stress can be described by the Mohr Coulomb failure criterion, and the cohesion and friction angle of the interface under different roughness conditions can be calculated accordingly. We find that there also exists a critical value JRCcr for cohesion and the cohesion of the interface increases first and then decreases as JRC increases. Moreover, the friction angle of the interface fluctuates with the change of JRC and it is always smaller than the internal friction angle of clay used in this experiment; (4) the failure type of the interface of the clay-concrete slab is type I sliding failure and does not change with varying JRC when the normal stress is small enough. When the normal stress increases to a certain extent, the failure type of the interface will gradually change from shear failure to type II sliding failure with the increment of JRC.

Molecular dynamics study of Al solute-dislocation interactions in Mg alloys

  • Shen, Luming
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • In this study, atomistic simulations are performed to study the effect of Al solute on the behaviour of edge dislocation in Mg alloys. After the dissociation of an Mg basal edge dislocation into two Shockley partials using molecular mechanics, the interaction between the dislocation and Al solute at different temperatures is studied using molecular dynamics. It appears from the simulations that the critical shear stress increases with the Al solute concentration. Comparing with the solute effect at T = 0 K, however, the critical shear stress at a finite temperature is lower since the kinetic energy of the atoms can help the dislocation conquer the energy barriers created by the Al atoms. The velocity of the edge dislocation decreases as the Al concentration increases when the external shear stress is relatively small regardless of temperature. The Al concentration effect on the dislocation velocity is not significant at very high shear stress level when the solute concentration is below 4.0 at%. Drag coefficient B increases with the Al concentration when the stress to temperature ratio is below 0.3 MPa/K, although the effect is more significant at low temperatures.

Effects of Stenting Shapes on the Wall Shear Stress in the Angulated Coronary Stenosis (협착된 관상동맥에 시술된 스텐트형상이 벽면 전단응력에 미치는 영향)

  • Cho, Min-Tae;Suh, Sang-Ho;Yoo, Sang-Sin;Keun, Huk-Moon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.219-222
    • /
    • 2001
  • The objective of the present study is to evaluate the effects of the stenting shapes on flow velocity and wall shear stress in angulated coronary stenosis by computer simulation. Coronary angiogram and Doppler ultrasound measurement in the patients with angulated coronary stenosis were obtained. Inlet wave velocity distribution obtained from in vivo intracoronary Doppler data was used for the numerical simulation. Spatial pattern of blood flow velocity and recirculation area were drawn through out the selected segment of coronary models. Wall shear stresses in the intracoronary stent models were calculated from three-dimensional computer simulation. A negative shear stress region, which is consistent with re-circulation area on flow pattern, was noted on the inner wall of post-stenotic area of pre-stenting model. The negative shear stress was disappeared after stenting. Shear stress in the post-stenting model was markedly reduced up to about two orders of magnitude compared to that of the pre-stenting model.

  • PDF

Mechanization of Pine Cone Harvest(II) -Shearing Characteristics of Shoots of Korean Pine Trees- (잣 수확의 기계화 연구(II) -잣나무 가지의 전단 특성-)

  • Kang, W.S.;Kim, S.H.;Lee, J.S.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.1
    • /
    • pp.17-21
    • /
    • 1994
  • This reasearch was performed to provide the fundamental intonation for the mechanization of Korean pine cone harvest when the shoot shearing method is adopted. Shear force and stress of pine cone shoots were measured and analyzed for this purpose. Samples are selected along their harvesting time and tested in 17 levels of shoot diameter from 10 to 26mm with 1mm increment. 1) Shear force-deformation characteristics showed that shoot reached its rupture point after 2 to 4 of bio-yield points. It was supposed that these multiple bio-yield points were caused by the discrete compression of wood parts which are composed of water, nutrient, resin, etc. 2) Required shear force to shear shoot was proportional to the square of shoot diamter, however, shear force for shoots of early harvesting time(Aug. 31) was proportional to the shoot diameter. Variance of shear force was increased as the harvesting time was delayed. Shear forces were distributed from 468N(Aug. 31, 12mm dia) to 4153N(Aug. 31, 26mm dia) disregarding the sampling date. 3) The average shear stresses by sampling dates were 744,822, and 883N/m2, respectively, and for the earlier shoot samples shear stress was quite smaller than the others. Shear stress was proportional to shoot diameter squared, and the effect of shoot diameter on the shear stress was decreased as harvesting time was delayed.

  • PDF

Evaluation of preconsolidation stress by shear wave velocity

  • Yoon, Hyung-Koo;Lee, Changho;Kim, Hyun-Ki;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.275-287
    • /
    • 2011
  • The behaviors of saturated soils such as compressibility and permeability are distinguished by preconsolidation stress. Preconsolidation stress becomes an important design parameter in geotechnical structures. The goal of this study is to introduce a new method for the evaluation of preconsolidation stress based on the shear wave velocity at small strain, using Busan, Incheon, and Gwangyang clays in Korea. Standard consolidation tests are conducted by using an oedometer cell equipped with bender elements. The preconsolidation stresses estimated by shear wave velocity are compared with those evaluated by the Casagrande, constrained modulus, work, and logarithmic methods. The preconsolidation stresses estimated by the shear wave velocity produce very similar values to those evaluated by the Onitsuka method (one of the logarithmic methods), which yields an almost real preconsolidation stress. This study shows that the shear wave velocity method provides a reliable method for evaluating preconsolidation stress and can be used as a complementary method.

Plantar Shear Stress and Normal Pressure in Lateral Heel Diabetic Foot Patients During Walking (외측 뒤꿈치 당뇨발 환자의 보행 중 발바닥 전단응력 및 압력분포)

  • Hwang, Sung-Jae;Park, Sun-Woo;Yi, Jin-Bock;Ryu, Ki-Hong;Kim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.118-125
    • /
    • 2007
  • In this study, we analyzed the plantar shear stress and normal pressure in lateral heel diabetic foot patients during walking by using in-shoe local shear stress and plantar pressure measurement systems. The shear force transducer based on the magnetic-resistive principle, was a rigid 3-layer circular disc. Shear transducers were mounted on the locations of four metatarsal heads and heel in the insole. Twelve normal subjects and three diabetic foot patients with diabetic neuropathy in the lateral heel participated in this study. The center of pressure in lateral heel diabetic foot patients moved more medially and directed toward the first, medial to the second metatarsal heads, and the hallux during late stance, making pressure at the medial heel and the second metatarsal head significantly larger than in the normal. Shear stress at the heel changed significantly in early stance and the magnitude of shear stresses in each metatarsal head also changed. Further studies would be very helpful to design foot orthoses in patients with diabetic neuropathy or other diseases.