• Title/Summary/Keyword: Shear-stress

Search Result 3,992, Processing Time 0.027 seconds

Preshear Influence for Liquefaction Resistance in Sand (사질지반에서 액상화 저항에 대한 선행전단응력의 영향)

  • 윤여원;김한범;김방식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.315-322
    • /
    • 2003
  • Cyclic simple shear tests were performed to find out the effect of preshear on dynamic strength of the sandy soil. Tests were performed for the specimens with 40% and 60% of relative density, under three different effective vertical stress of 50, 100 and 200kPa. For 50 and 100kPa, preshear ratios 0.00, 0.08, 0.12 and 0.16 were given, respectively, For low and high relative densities, two different results are shown in dynamic tests. Under the dense conditions, the maximum shear stress ratio($\tau$$\_$cyc//$\sigma$$\_$vo/) and the cyclic shear stress ratio($\tau$$\_$cyc//$\sigma$$\_$vo/) causing a certain shear strain increase with augmenting preshear ratio(${\alpha}$). However, the maximum shear stress ratio and the cyclic shear stress ratio increase or decrease with increasing preshear ratio under the loose conditions. Correction factor(K$\_$${\alpha}$/) for preshear increases at an early stage and then decreases with increasing preshear ratio at loose condition and increase with increasing preshear ratio at dense condition. Correction factor (K$\_$${\alpha}$,Max/) for preshear increases with the increasing preshear ratio irrespective of relative density, and the value of has same behavior as K$\_$${\alpha}$/.

  • PDF

Numerical Analysis of Transitional Flow in a Stenosed Carotid Artery (협착된 경동맥내 천이 유동 수치 해석)

  • Kim, Dongmin;Hwang, Jinyul;Min, Too-Jae;Jo, Won-Min
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.1
    • /
    • pp.52-63
    • /
    • 2022
  • Direct numerical simulation of blood flow in a stenosed, patient-specific carotid artery was conducted to explore the transient behavior of blood flow with special emphasis on the wall-shear stress distribution over the transition region. We assumed the blood as an incompressible Newtonian fluid, and the vessel was treated as a solid wall. The pulsatile boundary condition was applied at the inlet of the carotid. The Reynolds number is 884 based on the inlet diameter, and the maximum flow rate and the corresponding Womersley number is approximately 5.9. We found the transitional behavior during the acceleration and deceleration phases. In order to quantitatively examine the wall-shear stress distribution over the transition region, the probability density function of the wall-shear stress was computed. It showed that the negative wall-shear stress events frequently occur near peak systole. In addition, the oscillatory shear stress index was used to further analyze the relationship with the negative wall-shear stress appearing in the systolic phase.

Computation of a Turbulent Natural Convection in a Rectangular Cavity with the Low-Reynolds-Number Differential Stress and Flux Model

  • Choi, Seok-Ki;Kim, Eui-Kwang;Wi, Myung-Hwan;Kim, Seong-O
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1782-1798
    • /
    • 2004
  • A numerical study of a natural convection in a rectangular cavity with the low-Reynolds-number differential stress and flux model is presented. The primary emphasis of the study is placed on the investigation of the accuracy and numerical stability of the low-Reynolds-number differential stress and flux model for a natural convection problem. The turbulence model considered in the study is that developed by Peeters and Henkes (1992) and further refined by Dol and Hanjalic (2001), and this model is applied to the prediction of a natural convection in a rectangular cavity together with the two-layer model, the shear stress transport model and the time-scale bound ν$^2$- f model, all with an algebraic heat flux model. The computed results are compared with the experimental data commonly used for the validation of the turbulence models. It is shown that the low-Reynolds-number differential stress and flux model predicts well the mean velocity and temperature, the vertical velocity fluctuation, the Reynolds shear stress, the horizontal turbulent heat flux, the local Nusselt number and the wall shear stress, but slightly under-predicts the vertical turbulent heat flux. The performance of the ν$^2$- f model is comparable to that of the low-Reynolds-number differential stress and flux model except for the over-prediction of the horizontal turbulent heat flux. The two-layer model predicts poorly the mean vertical velocity component and under-predicts the wall shear stress and the local Nusselt number. The shear stress transport model predicts well the mean velocity, but the general performance of the shear stress transport model is nearly the same as that of the two-layer model, under-predicting the local Nusselt number and the turbulent quantities.

The Influence of Rock Joint Roughness and Normal Stress on Shear Behaviour (거칠기와 수직응력에 따른 암석 절리면의 전단거동)

  • Lee, Myoung-Ho;Kim, Jong-Woo;Chang, Kwang-Taek
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.186-196
    • /
    • 2007
  • In this study, direct shear tests were carried out on the 30 rock joint samples in order to investigate the influence of roughness and normal stress on the shear behaviour. Joint roughness profiles were measured by use of 3D laser profiler, and then the samples were equally classified into three individual groups according to the roughness index of rock joints. Peak shear strength, residual shear strength, shear stiffness, dilation angle of rock joints were investigated in condition of five different constant normal load. Peak shear strength was increased as roughness index was increased, and the influence of roughness on strength was found to be more considerable in case of lower normal stress condition. Residual shear strength and shear stiffness were increased as roughness index and normal stress were increased. Finally dilation angle was decreased as normal stress was increased, but it was increased as roughness index was increased in the same normal stress condition.

Evaluation of Resilient Modulus Models for Recycled Materials (재활용 도로재료의 회복탄성계수 산정을 위한 적용 모델의 평가)

  • Son, Young-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.51-57
    • /
    • 2010
  • Many models have been used to represent the effects of confining stress, bulk stress, and shear stress on the value of the resilient modulus (Mr). This study was conducted to estimate Mr of the recycled materials such as recycled concrete aggregate (RCA) and recycled asphalt pavement (RAP) through the repeated load cyclic test. Also, two models were applied to estimation of Mr for comparing between measured Mr values and predicted Mr values. The first model (A-model) can provide a quick and easy estimation of the Mr based on the bulk stress, while the second model (N-model) includes not only the bulk stress but also the shear stress. Statistical analysis indicated that all results using the both of models are significant at a 95 % confidence level. Therefore, the both of models could be used as an effective prediction model of Mr for RCA and RAP. Especially, the Model 2 including the parameters of the bulk stress and the shear stress could give more reliable estimation at the high range of Mr values.

Confinement model for RC columns strengthened with direct-fastened steel plates

  • Shan, Z.W.;Looi, D.T.W.;Su, R.K.L.
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.367-381
    • /
    • 2021
  • Reinforced concrete (RC) columns can be strengthened by direct fastening of steel plates around a column, forming composite actions. This method can increase both the total load bearing area and the concrete confinement stress. To predict the axial load resistance of strengthened RC columns, the equivalent passive confinement stress of the stirrups and the steel jacket should be accurately quantified, which requires the stress in the stirrups and shear force in the connections to be first obtained. In this paper, parameters, i.e., the stress ratio of the stirrups and shear force ratio of steel plate connectors are utilized to quantify the stress of the stirrups and shear force in the connections. A mechanical model for determining the stress ratio of the stirrups and shear force ratio of steel plate connectors is proposed and validated using the experimental results in a previous study. The model is found to be robust. Subsequently, a parametric study is conducted and the optimum stress ratios of the stirrups and the optimum shear force ratios of connectors are proposed for engineering designs.

Space-Time Characteristics of the Wall Shear-Stress Fluctuations in an Axial Turbulent Boundary Layer with Transverse Curvature

  • Shin, Dong-Shin;Lee, Seung-Bae;Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1682-1691
    • /
    • 2005
  • Direct numerical simulation database of an axial turbulent boundary layer is used to compute frequency and wave number spectra of the wall shear-stress fluctuations in a low-Reynolds number axial turbulent boundary layer. One-dimensional and two-dimensional power spectra of flow variables are calculated and compared. At low wave numbers and frequencies, the power of streamwise shear stress is larger than that of spanwise shear stress, while the powers of both stresses are almost the same at high wave numbers and frequencies. The frequency/streamwise wave number spectra of the wall flow variables show that large-scale fluctuations to the rms value is largest for the stream wise shear stress, while that of small-scale fluctuations to the rms value is largest for pressure. In the two-point auto-correlations, negative correlation occurs in streamwise separations for pressure, and in span wise correlation for both shear stresses.

Measurements of Erosion Rate in Fine-Grained Soils (세립토의 침식율 측정)

  • 곽기석;정문경;정하익;우제윤;조삼덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.337-342
    • /
    • 2002
  • A new apparatus called the EFA (Erosion Function Apparatus) has been built and tested to measure the erodibility of fine-grained soils. The EFA is a simple test to predict the erosion rate of fine-grained soils along with the corresponding velocity and shear stress. In addition, it is advantageous in predicting the scour rate for actual soil samples from bridge sites. The plot of erosion rate versus shear stress is the result of an EFA test. It Indicates the critical shear stress at which erosion starts and the rate of erosion beyond that shear stress. In order to measure the erodibilities of various soils, 14 Shelby Tube soil samples are collected from the actual bridge sites and tested using the EFA. The results of the EFA tests which are the relationships between erosion rates and shear stresses are presented in this paper and research continues to develop the correlation between the erosion function and the soil properties.

  • PDF

Energy-based evaluation of liquefaction potential of uniform sands

  • Sonmezer, Yetis Bulent
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.145-156
    • /
    • 2019
  • Since behaviors of loose, dense, silty sands vary under seismic loading, understanding the liquefaction mechanism of sandy soils continues to be an important challenges of geotechnical earthquake engineering. In this study, 36 deformation controlled cyclic simple shear tests were performed and the liquefaction potential of the sands was investigated using three different relative densities (40, 55, 70%), four different effective stresses (25, 50, 100, 150 kPa) and three different shear strain amplitudes (2, 3.5, 5%) by using energy based approach. Experiments revealed the relationship between per unit volume dissipated energy with effective stress, relative density and shear strain. The dissipate energy per unit volume was much less affected by shear strain than effective stress and relative density. In other words, the dissipated energy is strongly dependent on relative density and effective stress. These results show that the dissipated energy per unit volume is very useful and may contain the non-uniform loading conditions of the earthquake spectrum. When multiple regression analysis is performed on experiment results, a relationship is proposed that gives liquefaction energy of sandy soils depending on relative density and effective stress parameters.

Localized deformation in sands and glass beads subjected to plane strain compressions

  • Zhuang, Li;Nakata, Yukio;Lee, In-Mo
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.499-517
    • /
    • 2013
  • In order to investigate shear behavior of granular materials due to excavation and associated unloading actions, load-controlled plane strain compression tests under decreasing confining pressure were performed under drained conditions and the results were compared with the conventional plane strain compression tests. Four types of granular material consisting of two quartz sands and two glass beads were used to investigate particle shape effects. It is clarified that macro stress-strain behavior is more easily influenced by stress level and stress path in sands than in glass beads. Development of localized deformation was analyzed using photogrammetry method. It was found that shear bands are generated before peak strength and shear band patterns vary during the whole shearing process. Under the same test condition, shear band thickness in the two sands was smaller than that in one type of glass beads even if the materials have almost the same mean particle size. Shear band thickness also decreased with increase of confining pressure regardless of particle shape or size. Local maximum shear strain inside shear band grew approximately linearly with global axial strain from onset of shear band to the end of softening. The growth rate is found related to shear band thickness. The wider shear band, the relatively lower the growth rate. Finally, observed shear band inclination angles were compared with classical Coulomb and Roscoe solutions and different results were found for sands and glass beads.