• Title/Summary/Keyword: Shear-rate

Search Result 1,312, Processing Time 0.027 seconds

Developments and applications of a modified wall function for boundary layer flow simulations

  • Zhang, Jian;Yang, Qingshan;Li, Q.S.
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.361-377
    • /
    • 2013
  • Wall functions have been widely used in computational fluid dynamics (CFD) simulations and can save significant computational costs compared to other near-wall flow treatment strategies. However, most of the existing wall functions were based on the asymptotic characteristics of near-wall flow quantities, which are inapplicable in complex and non-equilibrium flows. A modified wall function is thus derived in this study based on flow over a plate at zero-pressure gradient, instead of on the basis of asymptotic formulations. Turbulent kinetic energy generation ($G_P$), dissipation rate (${\varepsilon}$) and shear stress (${\tau}_{\omega}$) are composed together as the near-wall expressions. Performances of the modified wall function combined with the nonlinear realizable k-${\varepsilon}$ turbulence model are investigated in homogeneous equilibrium atmosphere boundary layer (ABL) and flow around a 6 m cube. The computational results and associated comparisons to available full-scale measurements show a clear improvement over the standard wall function, especially in reproducing the boundary layer flow. It is demonstrated through the two case studies that the modified wall function is indeed adaptive and can yield accurate prediction results, in spite of its simplicity.

THE ALIGNMENT OF SR-FERRITE POWDERS AND MAGNETIC PROPERTIES IN FABRICATION OF MULTI-POLE ANISOTROPIC SINTERED SR-FERRITES BY POWDER INJECTION MOLDING

  • Cho, T.S.;Park, B.S.;Jeung, W.Y.;Moon, T.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.740-744
    • /
    • 1995
  • For the fabrication of a multi-pole anisotropic Sr-ferrite magnet by powder injection molding, it is important to control effectively the alignment of magnetic powders during the injection molding process. The effect of the fluidity of powder/binder mixture on the powder alignment was studied with changing the particle sizes and the volume fraction of Sr-ferrite magnetic powders. The critical volume fraction of Sr-ferrite powders increases from 58 vol.% to 64 vol.% as the mean powder size increases from $0.8\;\mu\textrm{m}$ to $1.2\;\mu\textrm{m}$. A Sr-ferrite powder alignment greater than 80 % is achieved at the conditions of an apparent viscosity lower than 1000 poise at $1600\;sec^{-1}$ shear rate, an applied magnetic field higher than 4 kOe, and a powder volume fraction 8 vol.% lower than the critical fraction. The powder alignment obtained during the injection molding process is not much affected by the subsequent processes of debinding and sintering, showing the magnetic properties of 3.8 kG of remanent flux density and 3.37 kOe of intrinsic coercivity.

  • PDF

Creep characteristics and instability analysis of concrete specimens with horizontal holes

  • Xin, Yajun;Hao, Haichun;Lv, Xin;Ji, Hongying
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2018
  • Uniaxial compressive strength test and uniaxial compression creep one were produced on four groups of twelve concrete specimens with different hole number by RLW-2000 rock triaxial rheology test system. The relationships between horizontal holes and instantaneous failure stress, the strain, and creep failure stress, the strain, and the relationships between stress level and instantaneous strain, creep strain were studied, and the relationship between horizontal holes and failure mode was determined. The results showed that: with horizontal hole number increasing, compressive strength of the specimens decreased whereas its peak strain increased, while both creep failure strength and its peak strain decreased. The relationships between horizontal holes and compressive strength of the specimens, the peak strain, were represented in quadratic polynomial, the relationships between horizontal holes and creep failure strength, the peak strain were represented in both linear and quadratic polynomial, respectively. Instantaneous strain decreased with stress level increasing, and the more holes in the blocks the less the damping of instantaneous strain were recorded. In the failure stress level, instantaneous strain reversally increased, creep strain showed three stages: decreasing, increasing, and sharp increasing; in same stress level, the less holes the less creep strain rate was recorded. The compressive-shear failure was produced along specimen diagonal line where the master surface of creep failure occurred, the more holes in a block, the higher chances of specimen failure and the more obvious master surface were.

Comparison of Blood Loss and Meat Quality Characteristics in Korean Black Goat Subjected to Head-Only Electrical Stunning or without Stunning

  • Bakhsh, Allah;Ismail, Ishamri;Hwang, Young-Hwa;Lee, Jung-Gyu;Joo, Seon-Tea
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1286-1293
    • /
    • 2018
  • This study assessed the effects of non-stunning (NS) and head-only electrical stunning (HOES) slaughtering condition on meat quality traits of longissimus lumborum (LL) muscle from Korean black goat (KBG). Ten KBGs (18 months) were assigned into two groups and exposed to either NS or HOES treatments. Blood loss (BL) % was measured after exsanguination, and meat quality traits including muscle pH, meat color measurements (CIE $L^*$, $a^*$, $b^*$, Chroma, and hue angle), water-holding capacity (WHC), Warner-Bratzler shear force (WBSF), and sarcomere length were measured at 24 h postmortem. Results indicated that NS and HOES had no significant difference on BL %, the rate of pH decline, meat color properties, and WHC (p>0.05). It has only a small effect on WBSF and sarcomere length values, but the difference was marginal. These results suggested that meat quality of LL muscle from goat might not be affected by slaughter methods because neither NS nor HOES did result in poor quality of meat.

Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques

  • Das, Arijit;Hirwani, Chetan K.;Panda, Subrata K.;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.749-758
    • /
    • 2018
  • This article derived a hybrid coupling technique using the higher-order displacement polynomial and three soft computing techniques (teaching learning-based optimization, particle swarm optimization, and artificial bee colony) to predict the optimal stacking sequence of the layered structure and the corresponding frequency values. The higher-order displacement kinematics is adopted for the mathematical model derivation considering the necessary stress and stain continuity and the elimination of shear correction factor. A nine noded isoparametric Lagrangian element (eighty-one degrees of freedom at each node) is engaged for the discretisation and the desired model equation derived via the classical Hamilton's principle. Subsequently, three soft computing techniques are employed to predict the maximum natural frequency values corresponding to their optimum layer sequences via a suitable home-made computer code. The finite element convergence rate including the optimal solution stability is established through the iterative solutions. Further, the predicted optimal stacking sequence including the accuracy of the frequency values are verified with adequate comparison studies. Lastly, the derived hybrid models are explored further to by solving different numerical examples for the combined structural parameters (length to width ratio, length to thickness ratio and orthotropicity on frequency and layer-sequence) and the implicit behavior discuss in details.

Correlations of Sensory Quality Characteristics with Intramuscular Fat Content and Bundle Characteristics in Bovine Longissimus Thoracis Muscle

  • Choi, Young Min;Garcia, Lyda Guadalupe;Lee, Kichoon
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.197-208
    • /
    • 2019
  • The aim of this study was to investigate the relation of sensory quality traits of cooked beef to fresh meat quality and histochemical characteristics, especially muscle bundle traits, in the longissimus thoracis muscle of Hanwoo steers. Cooking loss negatively correlated with softness, initial tenderness, chewiness, rate of breakdown (RB), and amount of perceptible residue (AR) after chewing (p<0.05), and drip loss showed negative correlation with RB and AR (p<0.05). All the attributes of tenderness exhibited negative correlation with the Warner-Bratzler shear force value (p<0.05). Marbling score and the intramuscular fat (IMF) content showed positive correlation with all the organoleptic characteristics, including tenderness attributes, juiciness, and flavor (p<0.05). Regarding histochemical characteristics, muscle fiber size did not have a significant correlation with all the sensory quality traits, although the area percentage of type I fiber was related with softness, initial tenderness, and chewiness (p<0.05). On the contrary, the characteristics of muscle bundle were related to all the sensory tenderness attributes (p<0.05), and the sensory tenderness increased with smaller muscle bundle size (p<0.05). These results suggest that the IMF content and bundle characteristics can be used as indicators for explaining the variations in sensory tenderness in well-marbled beef.

Design Optimization on 2 Vane Pump of Wastewater Treatment for Efficiency Improvement (효율향상을 위한 폐수처리용 2 Vane 펌프 설계 최적화)

  • KIM, SUNG;MA, SANG-BUM;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.277-284
    • /
    • 2021
  • This paper deals with multi-objective optimization using response surface method to improve the hydraulic performances of a 2 vane pump for wastewater treatment. For analyzing the internal flow field in the pump, steady Reynolds-averaged Navier-Stokes equations were solved with the shear stress transport turbulence model as a turbulence closure model. The impeller and volute variables were defined in the shape of the 2 vane pump. The objective functions were set to satisfy the total head at the design flow rate as well as to improve the efficiency. The hydraulic performance of the optimally designed shape was verified by numerical analysis results.

Advanced Design Technique for a Single-Channel Pump Based on the Main Performance Parameters (주요 성능변수를 근거한 단일채널펌프 설계기술)

  • KIM, SUNG;CHOI, YOUNG-SEOK;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.5
    • /
    • pp.448-454
    • /
    • 2019
  • This paper presents a high-efficiency design technique for developing the serialized models of a single-channel pump based on the diameter, flow rate and head as the main performance parameters. The variation in pump performance by changing of the single-channel pump geometry was predicted based on computational fluid dynamics (CFD). Numerical analysis was conducted by solving three-dimensional steady Reynolds-averaged Navier-Stokes equations with the shear stress transport (SST) turbulence model. The tendencies of the hydraulic performance depending on the pump geometry scale were analyzed with the fixed rotational speed. These performances were expressed and evaluated as the functionalization for designing the serialized models of a single-channel pump in this work.

Investigating the effect of edge crack on the modal properties of composite wing using dynamic stiffness matrix

  • Torabi, Ali Reza;Shams, Shahrokh;Fatehi-Narab, Mahdi
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.543-564
    • /
    • 2021
  • In this study free vibration analysis of a cracked Goland composite wing is investigated. The wing is modelled as a cantilevered beam based on Euler- Bernoulli equations. Also, composite material is modelled based on lamina fiber-reinforced. Edge crack is modelled by additional boundary conditions and local flexibility matrix in crack location, Castigliano's theorem and energy release rate formulation. Governing differential equations are extracted by Hamilton's principle. Using the separation of variables method, general solution in the normalized form for bending and torsion deflection is achieved then expressions for the cross-sectional rotation, the bending moment, the shear force and the torsional moment for the cantilevered beam are obtained. The cracked beam is modelled by separation of beam into two interconnected intact beams. Free vibration analysis of the beam is performed by applying boundary conditions at the fixed end, the free end, continuity conditions in the crack location of the beam and dynamic stiffness matrix determinant. Also, the effects of various parameters such as length and location of crack and fiber angle on natural frequencies and mode shapes are studied. Modal analysis results illustrate that natural frequencies and mode shapes are affected by depth and location of edge crack and coupling parameter.

Evaluation of 3D printability of cementitious materials according to thixotropy behavior

  • Lee, Keon-Woo;Choi, Myoung Sung
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.141-149
    • /
    • 2021
  • This study is a basic research for evaluating the buildability of cementitious materials for three-dimensional (3D) printing. In the cement paste step, the thixotropy behavior according to the resting time, which represents the time interval between each layer, was analyzed. In addition, the relationship between the thixotropy behavior and 3D concrete printing buildability was derived by proposing a measurement method that simulates the 3D concrete printing buildup process. The analysis of the tendency of the thixotropy behavior according to the resting time revealed that the area of the hysteresis loop (AHyst) showed a tendency to increase and then converge as the resting time increased, which means hysteresis loop approach critical resting time for sufficient buildability. In the thixotropy behavior analysis that simulates the 3D concrete printing buildup process, the buildup ratio, which is the recovery rate of the shear stress, showed a tendency to increase and then converge as the resting time increased, which are similar results like hysteresis loop. It was concluded that AHyst and the buildup ratio can be used as parameters for determining the resting time, and they have close relationships with 3D concrete printing buildability.