• Title/Summary/Keyword: Shear tension

Search Result 649, Processing Time 0.03 seconds

Determining Shear Modulus of 3-ply Laminated Veneer Lumber by Uniaxial Tension Test

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.425-431
    • /
    • 2013
  • Estimation equations of shear modulus in the plane of laminated veneer lumber (LVL) were compared each other through uniaxial tension test results. The equations - basic elastic equation in the dimensional orthotropic case, Hankinson's formula and empirical equation proposed by Salikis and Falk, were applied to determine the elastic constants at various angles to the grain, which were needed for determination of shear modulus. Tensile elastic modulus of LVL predicted from these equations were compared with test data to evaluate the accuracy of the equation. Tensile elastic modulus rapidly decreased at orientations between 0 and 15 degrees and elastic modulus at grain angles of 15, 30, and 45 degrees overestimated in the presented equations. But the proposed equation by Salikis and Falk showed better prediction, especially at 30, and 45 degrees. This proposed formula would be more useful and practical for estimating of shear modulus of wood composites like LVL to minimize the effect of Poisson's ratio term.

Plastic Analysis of Steel Plate Shear Panels using Strip Model (스트립 모델을 이용한 강판 전단패널의 소성 해석)

  • Lee, Myung Ho;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.71-80
    • /
    • 2006
  • The behaviors of steel-plate shear panels were investigated through an experimental and analytical study, using mild steel (S40). Steel-plate shear panels buckle at small loads, and their strength is based on the shear panel's postbuckling strength due to tension field action. In design practice, however, the capacity of steel-plate shear panels is limited to the elastic buckling strength of shear panels. Th e National Standard on Limit States Design of Steel Structures, CAN/CSA-S16.1-94 (1994) contains a guideline for the analysis of thi n, unstiffened, steel-plate shear walls using the strip model. In this paper, the structural capacity of shear panels was evaluated using the results of the experiment and of the strip model analysis.

Influence of ECC ductility on the diagonal tension behavior (shear capacity) of shear-wall panel (ECC (Engineered Cementitious Composite)의 연성이 전단벽의 사인장 거동에 미치는 영향)

  • Ha Gee-Joo;Shin Jong-Hack;Kim Yun Yong;Kim Jeong-Su;Kim Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.321-324
    • /
    • 2005
  • This paper presents a preliminary study on the influence of material ductility on diagonal tension behavior of shear-wall panels. There have been a number of previous studies, which suggest that the use of high ductile material such as ECC (Engineered Cementitious Composite) significantly enhanced shear capacity of structural elements even without shear reinforcements involved. The present study emphasizes increased shear capacity of shear-wall panels by employing a unique strain-hardening ECC reinforced with poly(vinyl alcohol) (PVA) short random fibers. Normal concrete was adopted as the reference material. Experimental investigation was performed to assess the failure mode of shear-wall panels subjected to knife-edge loading. The results from experiments show that ECC panels exhibit a more ductile failure mode and higher shear capacity when compared to ordinary concrete panels. The superior ductility of ECC was clearly reflected by micro-crack development, suppressing the localized drastic fracture typically observed in concrete specimen. This enhanced structural performance indicates that the application of ECC for a in-filled frame panel can be effective in enhancing seismic resistance of an existing frame in service.

  • PDF

Inplane Shear Material Properties of Unidirectional Carbon Fiber Reinforced Aluminum Laminate Composites (일 방향 탄소섬유 강화 알루미늄 적층 복합재료의 전단물성치 측정에 관한 연구)

  • Baek, Un-Cheol;Cho, Maeng-Hyo;Hawong, Jai-Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2114-2121
    • /
    • 2002
  • In order to study the effects of oblique tabs on the in-plane shear properties of unidirectional carbon fiber reinforced aluminum laminate composites, the 10$^{\circ}$off-axis tensile test, the 45 $^{\circ}$off-axis tensile test and Iosipescu shear test were performed to determine the shear properties. Off-axis tension test was studied by using new oblique-shaped tabs proposed by Sun and $Chung^{(7)}$. Iosipescu shear test was studied by using modified Wyoming test fixture. The oblique tabs reduced remarkably end-constraint effects of off-axis specimens with a aspect ratio of about eight. The experimental results show that there is no significant difference between off-axis test results and those of Iosipescu shear test. The 45$^{\circ}$off-axis tensile tests are recommended for the determination of the shear properties of unidirectional carbon fiber reinforced aluminum laminated composites.

Effect of Compressive Stress on Multiaxial Loading Fracture of Alumina Tubes (알루미나 튜브의 복합하중 파괴에 미치는 압축응력의 영향)

  • Kim, K.T.;Suh, J.
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.810-818
    • /
    • 1991
  • Fracture responses of Al2O3 tubes were investigated for various loading paths under combined tension/torsion. The fracture criterion did not depend on loading paths. Fracture angles agreed well with the maximum tensile stress criterion. As the loading condition approaches a shear dominant state, the tensile principal stress at fracture increases compared to the uniaxial fracture strength. By using the Weibull modulus obtained from tension and torsion tests, the Weibull statistical fracture strengths were compared with experimental data. This comparison suggests that fracture may occur at the surface of the specimen when tensile stress is dominant, but within the volume of the specimen when shear stress is dominant. The Weibull fracture strength increased as the loading conition approached a shear dominant state, but underestimated compared to experimental data. Finally, a new fracture criterion was proposed by including the effect of compressive principal stress. The proposed criterion agreed well with experimental data of Al2O3 tubes not only at combined tension/torsion but also at balanced biaxial tension.

  • PDF

FEM Analysis of alternatively laminated structure constructed of rubber and reinforced aluminium layers (고무 알루미늄 적층 구조물의 유한요소 해석)

  • Park, Sung-Han;Lee, Bang-Up;Hong, Myung-Pyo;Ryu, Back-Reung
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.402-406
    • /
    • 2000
  • Strain energy function of the isoprene rubber was accurately determined by the experiments of uniaxial tension, planar tension, biaxial tension and volumetric compression. Deformation behavior of alternatively laminated structure of elastomer and reinforced aluminium layers, was analysed by Finite Element method. As a result, Ogden strain energy function obtained from the experiments describes the hyperelastic characteristics of the rubber very well. The compressibility of the rubber reduces axial stiffness of the structure. The axial stiffness of alternatively laminated structure being larger than shear stiffness. Which enables the structure to be shear-deformed easily.

  • PDF

Effect of Lecithin on Dermal Safety of Nanoemulsion Prepared from Hydrogenated Lecithin and Silicone Oil

  • Bae, Duck-Hwan;Shin, Jae-Sup;Shin, Gwi-Su;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.821-824
    • /
    • 2009
  • In this study, a hydrogenated lecithin-containing nanoemulsion was prepared from hydrogenated lecithin and silicone oil. Tween-60 and liquid paraffin, widely known emulsifiers, were used as standard substances, and high shear was produced by utilizing a high shear homogenizer and microfluidizer. The properties of the nanoemulsion prepared with hydrogenated lecithin were evaluated by measuring interfacial tension, dynamic interfacial tension, droplet size, zeta-potential, friction force, skin surface hygrometery, and dermal safety. The interfacial tension of lecinol S10/silicone oil was lower than that of lecinol S10/liquid paraffin. The nanoemulsion prepared from hydrogenated lecithin shows lower zeta-potential, skin surface hygrometery, and friction force compared with a general emulsion. The silicone nanoemulsion prepared from hydrogenated lecithin showed a zero value in the patch test and thus exhibits high dermal safety.

Impact Resistance of UHPC Exterior Panels under High Velocity Impact Load (고속충격을 받는 외장 UHPC 패널의 내충격성능)

  • Kang, Thomas H.-K.;Kim, Sang-Hee;Kim, Min-Soo;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.455-462
    • /
    • 2016
  • This experimental study aims to evaluate the impact performance of UHPC exterior panels through high velocity impact tests. The impact performance of UHPC was compared with that of granite in terms of panel thickness, and strain histories were recoded on the rear face of panel specimens. The UHPC turned out to be a good exterior facade material, because the appearance of UHPC is natural enough and impact performance was superior to granite. After colliding, compression pulse reached to the rear face but that pulse was reflected in tension pulse with respect to the free point outside the rear face of the panel. This tension pulse caused the scabbing from the rear side, as the strain histories on the rear face showed three different regions as compression region, steady region and tension region. The shear plug deformation by shear force also was one of the primary reasons for the scabbing based on the observation. Therefore, the scabbing seemed to be affected by both tension and shear forces.

The Effect of Surface Tension on Shear Wave Velocities according to Changes of Temperature and Degree of Saturation (온도와 포화도의 변화에 의한 표면장력이 전단파 속도에 미치는 영향)

  • Park, Jung-Hee;Kang, Min-Gu;Seo, Sun-Young;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.285-293
    • /
    • 2012
  • The surface tension, which is generated in the unsaturated soils, increases the stiffness of the soils. The objective of this study is to estimate the effect of the surface tension, which varies according to the temperature, on the shear wave velocity. Nine specimens, which have the different degree of saturation (0%, 2.5%, 5%, 10%, 20%, 40%, 60%, 80%, 100%), are prepared by using sand-silt mixtures. Experiments are carried out in a nylon cell designed for the measurement of shear waves. A pair of bender elements, which are used for the generation and detection of shear waves, is installed as a cross-hole type. The shear waves are continuously monitored and measured as the temperature of specimens decreases from $15^{\circ}C$ to $1^{\circ}C$. The results show that shear wave velocities of the fully saturated and fully dried specimens change a little bit as the temperatures of specimens decrease. However, the shear wave velocities of the specimens with the degree of saturations of 2.5%, 5%, 10%, 20%, 40%, 60% and 80% continuously increase as temperature decreases from $15^{\circ}C$ to $1^{\circ}C$. Furthermore, a fully saturated specimen is dried at the temperature of $70^{\circ}C$ in order to observe the shear waves according to degree of saturation. The shear wave velocities measured at the temperature of $70^{\circ}C$ are generally lower than those measured at temperature of $15^{\circ}C$. This study demonstrates that the dependence of shear wave velocities on the temperature according to the degree of saturation should be taken into account in both laboratory and field tests.

Experimental Study on the Load Transfer Behavior of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 하중전달 거동에 관한 실험적 연구)

  • Shin, Hyun-Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.10-21
    • /
    • 2014
  • The joint of prefabricated steel grid composite deck is composed of concrete shear key and high-tension bolts. The flexural and shear strength of the joint were experimentally evaluated only by the bending and push-out test of the joint element. In this study the lateral load transfer behavior of the joint in deck structure system is experimentally evaluated. Several decks connected by the joint are prefabricated and loaded centrically and eccentrically. In the case of centrically loaded specimens, the analysis results show that for the same loading step the rotation angle of the joint with 4 high-tension bolts is larger than the case of the joint with 9 high-tension bolts. Consequently, flexural stiffness of deck and lateral load transfer decrease in the case of specimen with 4 high-tension bolts. But, in the case of eccentrically loaded specimens, it is found that there are no significant differences in the load transfer behavior. The further analysis results about the structural behavior of the joint show that lateral load transfer can be restricted by the load bearing capacity of the joint as well as punching shear strength of the slab. Furthermore, considering that high-tension bolts in the joint didn't reach to the yielding condition until the punching shear failure, increase in the number of high-tension bolts from 4 to 9 has a greater effect on the flexural stiffness of the joint and deck system than the strength of them.