• Title/Summary/Keyword: Shear stiffness of frame

Search Result 215, Processing Time 0.02 seconds

Capacity design of boundary elements of beam-connected buckling restrained steel plate shear wall

  • Liu, Wen-Yang;Li, Guo-Qiang;Jiang, Jian
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.231-242
    • /
    • 2018
  • As a lateral load resisting component, buckling restrained steel plate shear walls (BRW) have excellent energy dissipating capacity. Similar to thin steel plate shear walls, the mechanical behavior of BRWs depends on the boundary elements (adjacent beams and columns) which need adequate strength and stiffness to ensure the complete yielding of BRWs and the emergence of expected plastic collapse mechanism of frame. This paper presents a theoretical approach to estimate the design forces for boundary elements of beam-connected BRW (i.e., The BRW is only connected to beams at its top and bottom, without connections to columns) using a fundamental plastic collapse mechanism of frame, a force transferring model of beam-connected BRW and linear beam and column analysis. Furthermore, the design method of boundary beams and columns is presented. The proposed approach does not involve nonlinear analyses, which can be easily and efficiently used to estimate the design forces of beams and columns in a frame with BRWs. The predicted design forces of boundary elements are compared with those from nonlinear finite element analyses, and a good agreement is achieved.

Dynamic Behaviour of Masonry inFilled Reinforced Concrete Frames with Non-Seismic Details (진동대실험을 통한 비내진상세를 가지는 RC 골조의 조적채움벽 유무에 따른 동적 거동 평가)

  • Baek, Eun-Rim;Kim, Kyung-Min;Cheon, Ju-Hyun;Oh, Sang-Hoon;Lee, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.121-129
    • /
    • 2017
  • In this paper, the shake table test for the masonry infilled reinforced concrete frame with non-seismic details was carried out in order to evaluate its dynamic behaviour and damage under seismic condition. The tested specimens were the RC frame and the masonry infilled RC frame and the dynamic characteristics, such as a resonant period, acceleration response, displacement response and base shear force response, were compared between them. As a result of the shake table test, RC frame specimen had flexural cracks at the top and bottom of the column and shear cracks at the joints. In the case of masonry infilled RC frame, the damage of the frame was relatively minor but the sliding cracks and diagonal shear cracks on the masonry wall were severe at the final excitation. The resonant period of infilled RC frame specimen was shorter than that of the RC frame specimen because the masonry infill contributed to increase the stiffness. The maximum displacement response of the infilled RC frame specimen was decreased by about 20% than the RC frame specimen. It was analyzed that the masonry infill wall applied in this study contributed to increase the lateral strength of the RC frame with non - seismic detail by about 2.2 times and the stiffness by about 1.6 times.

Seismic response of substandard RC frame buildings in consideration of staircases

  • Karaaslan, Ayberk;Avsar, Ozgur
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.283-295
    • /
    • 2019
  • During the seismic performance assessment of existing buildings, staircases are generally not taken into account as structural members but as dead load. Staircases, as secondary structural members, not only serve for connecting successive floors but also provide considerable amount of strength and stiffness to the building which can modify its seismic behaviour considerably. In this parametric study, the influence of staircases on the seismic response of substandard RC frame buildings which differ in number of storey and span, presence of staircase and its position has been examined. Modal Analyses and bi-directional Non-Linear Time History Analyses (NLTHA) were conducted to compare several engineering demand parameters (EDPs) such as inter-storey drift ratio (ISDR), floor accelerations, modal properties, member shear forces and plastic hinge distribution. Additionally, short column effect, variation in shear forces of columns that are attached to the staircase slab, failure and deformation in staircase models have also been investigated. As the staircase was considered in the analytical model, a different damage pattern can be developed especially in the structural components close to staircase.

Finite element analysis for the seismic performance of steel frame-tube structures with replaceable shear links

  • Lian, Ming;Zhang, Hao;Cheng, Qianqian;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.365-382
    • /
    • 2019
  • In steel frame-tube structures (SFTSs) the application of flexural beam is not suitable for the beam with span-to-depth ratio lower than five because the plastic hinges at beam-ends can not be developed properly. This can lead to lower ductility and energy dissipation capacity of the SFTS. To address this problem, a replaceable shear link, acting as a ductile fuse at the mid length of deep beams, is proposed. SFTS with replaceable shear links (SFTS-RSLs) dissipate seismic energy through shear deformation of the link. In order to evaluate this proposal, buildings were designed to compare the seismic performance of SFTS-RSLs and SFTSs. Several sub-structures were selected from the design buildings and finite element models (FEMs) were established to study their hysteretic behavior. Static pushover and dynamic analyses were undertaken in comparing seismic performance of the FEMs for each building. The results indicated that the SFTS-RSL and SFTS had similar initial lateral stiffness. Compared with SFTS, SFTS-RSL had lower yield strength and maximum strength, but higher ductility and energy dissipation capacity. During earthquakes, SFTS-RSL had lower interstory drift, maximum base shear force and story shear force compared with the SFTS. Placing a shear link at the beam mid-span did not increase shear lag effects for the structure. The SFTS-RSL concentrates plasticity on the shear link. Other structural components remain elastic during seismic loading. It is expected that the SFTS-RSL will be a reliable dual resistant system. It offers the benefit of being able to repair the structure by replacing damaged shear links after earthquakes.

Evaluation of seismic response of soft-storey infilled frames

  • Santhi, M. Helen;Knight, G.M. Samuel;Muthumani, K.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.423-437
    • /
    • 2005
  • In this study two single-bay, three-storey space frames, one with brick masonry infill in the second and third floors representing a soft-storey frame and the other without infill were designed and their 1:3 scale models were constructed according to non-seismic detailing and the similitude law. The models were excited with an intensity of earthquake motion as specified in the form of response spectrum in Indian seismic code IS 1893-2002 using a shake table. The seismic responses of the soft-storey frame such as fundamental frequency, mode shape, base shear and stiffness were compared with that of the bare frame. It was observed that the presence of open ground floor in the soft-storey infilled frame reduced the natural frequency by 30%. The shear demand in the soft-storey frame was found to be more than two and a half times greater than that in the bare frame. From the mode shape it was found that, the bare frame vibrated in the flexure mode whereas the soft-storey frame vibrated in the shear mode. The frames were tested to failure and the damaged soft-storey frame was retrofitted with concrete jacketing and, subjected to same earthquake motions as the original frames. Pushover analysis was carried out using the software package SAP 2000 to validate the test results. The performance point was obtained for all the frames under study, therefore the frames were found to be adequate for gravity loads and moderate earthquakes. It was concluded that the global nonlinear seismic response of reinforced concrete frames with masonry infill can be adequately simulated using static nonlinear pushover analysis.

Numerical study of the seismic behavior of steel frame-tube structures with bolted web-connected replaceable shear links

  • Lian, Ming;Cheng, Qianqian;Zhang, Hao;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.305-325
    • /
    • 2020
  • Beams of steel frame-tube structures (SFTSs) typically have span-to-depth ratios of less than five. This makes a flexural beam unsuitable for such an application because the plastic hinges at the beam-ends cannot be adequately developed. This leads to lower ductility and energy dissipation capacities of SFTSs. To address this, SFTSs with bolted web-connected replaceable shear links (SFTS-BWSLs) are proposed. In this structural system, a web-connected replaceable shear link with a back-to-back double channel section is placed at the mid-length of the deep beam to act as a ductile fuse. This allows energy from earthquakes to be dissipated through link shear deformation. SFTS and SFTS-BWSL buildings were examined in this study. Several sub-structures were selected from each designed building and finite element models were established to study their respective hysteretic performance. The seismic behavior of each designed building was observed through static and dynamic analyses. The results indicate that the SFTS-BWSL and SFTS have similar initial lateral stiffness and shear leg properties. The SFTS-BWSL had lower strength, but higher ductility and energy dissipation capacities. Compared to the SFTS, the SFTS-BWSL had lower interstory drift, base shear force, and story shear force during earthquakes. This design approach could concentrate plasticity on the shear link while maintaining the residual interstory drift at less than 0.5%. The SFTS-BWSL is a reliable resistant system that can be repaired by replacing shear links damaged due to earthquakes.

Shear Performance of Post and Beam Construction by Pre-Cut Process (프리컷 방식을 적용한 기둥-보 공법의 수평전단내력)

  • Hwang, Kweonhwan;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1-12
    • /
    • 2007
  • For the purpose of effective utilization of domestic second-grown larch as structural members, post and beam construction applying traditional construction to Japanese larch glulam members was adopted with processing by machine pre-cut method. In general, horizontal shear test by KS F 2154 is conducted to assess the horizontal shear properties of the wooden structure by post and beam construction. The frame was consisted of post and beam member with appropriate fasteners, and members have their own processed parts (notch, hole, etc.) that can be well-connected each other. The shear wall was consisted of the frame with screw-nail sheathed panel (OSB). The results of horizontal shear loading tests without vertical loads conducted on the frame and the shear wall structures, the maximum strengths were about 1.9 kN/m and about 9.7 kN/m, the shear rigidities were about 167 kN/rad, 8198 kN/rad, respectively. The strength proportion of the frame specimen was about 20% of the wall's and about 2% in initial stiffness. Nail failures are remarkable on the shear wall specimen with punching shears and shear failures. The shear load factor for the shear wall specimen by the method of Architectural Institute of Japan was 1.5, which was obtained by the bi-linear method. Loading method should be considered to obtain smooth load-deformation relationship. For the better shear performance of the structures, column base and post and beam connections and sheathed panel should be further examined as well.

The stability of semi-rigid skeletal structures accounting for shear deformations

  • Gorgun, Halil
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1065-1084
    • /
    • 2016
  • The analysis and design of skeletal structures is greatly influenced by the behaviour of beam-to-column connections, where patented designs have led to a wide range of types with differing structural quantities. The behaviour of beam-to-column connections plays an important role in the analysis and design of framed structures. This paper presents an overview of the influence of connection behaviour on structural stability, in the in-plane (bending) mode of sway. A computer-based method is presented for geometrically nonlinear plane frames with semi-rigid connections accounting for shear deformations. The analytical procedure employs transcendental modified stability functions to model the effect of axial force on the stiffness of members. The member stiffness matrix were found. The critical load has been searched as a suitable load parameter for the loss of stability of the system. Several examples are presented to demonstrate the validity of the analysis procedure. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks. Combined with a parametric column effective length study, connection and frame stiffness are used to propose a method for the analysis of semi-rigid frames where column effective lengths are greatly reduced and second order (deflection induced) bending moments in the column may be distributed via the connectors to the beams, leading to significant economies.

Evaluation of Inelastic Performance of a Reinforced Concrete Shear Wall-Frame System Designed by Resizing Algorithms (재분배 기법 적용에 따른 철근 콘크리트 전단벽-골조 시스템의 비선형 특성 평가)

  • An, Jin-Woo;Choi, Se-Woon;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.473-480
    • /
    • 2011
  • Recently, the resizing algorithms based on the displacement participation factors have been developed for sizing members to satisfy stiffness criteria. It is proved that this resizing algorithms made for utilizing worker's stiffness design are practical and rational due to the simplicity and convenience of the method. The resizing algorithm can be practically and effectively applied to drift design of buildings. However, the researches on the change of inelastic behavior by the resizing algorithm has been insufficient. To identify the effect on the inelastic behavior of buildings by the resizing method, this study used the reinforced concrete shear wall-frame example. Through the application of the resizing method, the weights of shear wall in the lower class and the weights of columns and beams in the upper class increased respectively. And the initial stiffness of the building increased and the ductility of the buildings had similar with that of the initial structure.

Seismic repair of captive-column damage with CFRPs in substandard RC frames

  • Tunaboyu, Onur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • The effectiveness of the repair scheme for the damaged captive-columns with CFRPs (Carbon Fiber Reinforced Polymer) was investigated in terms of response quantities such as strength, ductility, dissipated energy and stiffness degradation. Two 1/3 scale, one-story one-bay RC (Reinforced Concrete) frames were designed to represent the substandard RC buildings in Turkish building stock. The first one, which is the reference specimen, is the bare frame without infill wall. Partial infill wall with opening was constructed between the columns of the second frame and this caused captive column defect. Severe damage was observed with the concentration of shear cracks in the second specimen columns. Then, the damaged members were repaired by CFRP wrapping and retested. For the three test series, similar reversed cyclic lateral displacement under combined effect of axial load was applied to the top of the columns. Overall response of the bare frame was dominated by flexural cracks. Brittle type of shear failure in the column top ends was observed in the specimen with partial infill wall. It was observed that former capacity of damaged members of the second frame was recovered by the applied repair scheme. Moreover, ultimate displacement capacity of the damaged frame was improved considerably by CFRP wrapping.