• Title/Summary/Keyword: Shear crack concentration

Search Result 24, Processing Time 0.028 seconds

Shear Strength Estimation Model for Reinforced Concrete Members (철근콘크리트 부재의 전단강도 산정모델)

  • Lee, Deuckhang;Han, Sun-Jin;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.1-8
    • /
    • 2020
  • This study presents a shear strength estimation model, in which the shear failure of a reinforced concrete (RC) member is assumed to be governed by the flexure-shear mechanism. Two shear demand curves and corresponding potential capacity curves for cracked tension and uncracked compression zones are derived, for which the bond mechanism developed between reinforcing bars and surrounding concrete is considered in flexural analysis. The shear crack concentration factor is also addressed to consider the so-called size effect induced in large RC members. In addition,unlike exising methods, a new formulation was addressed to consider the interaction between the shear contributions of concrete and stirrup. To verify the proposed method, an extensive shear database was established, and it appeared that the proposed method can capture the shear strengths of the collected test specimens regardless of their material properties, geometrical features, presence of stirrups, and bond characteristics.

A Study on the Fatigue Strength Evaluation of Metal Matrix Composite (금속기 복합재료의 피로강도 평가에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.41-53
    • /
    • 1994
  • In this paper, rotating-bending fatigue tests of the SiC-whisker- reinforced 6061-T6 aluminum alloy and 6061-T6 alumiunm alloy made by power metallurgy were carried out to investigate the fatigue characteristics of plain and notched specimens at room temperature. The fatigue mechnisms in both materials were clarified through successive surface observations using the plastic replica method. In the case of the SiC-whisker-reinforced composites, there are whisker rich and poor zones and the fatigue crack is nucleated from the end of whiskers near the boundary. On the other hand, in the case of the 6061-T6 aluminum alloy, the fatigue crack is nucleated from defects and propagates by shear. Moreover, the results were discussed based on linear notch mechanics.

  • PDF

Separation Mode Analysis of Track Assembly of Main Battle Tank (궤도형 전투차량의 궤도박리 발생 및 성장모드 예측에 관한 연구)

  • Lee, Kyoung-Ho;Park, Byoung-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.173-180
    • /
    • 2007
  • In this paper, we have proposed a simple finite element model for separation mode analysis on the roadwheel and track assembly of main battle tank and established a contact stress-based mechanism which could explain the initiation and growth of separation defect occurred during the test of padreplacable track. It was proved that the longitudinal contact shear stress component on the pin hole region of the track shoe body which is parallel to the driving direction is consistent with the crack initiation at the bonding surface between track shoe and wheel-side rubber. The longitudinal shear stress increased locally near the separated region after the separation initiated. So we could assume that the local stress concentration accelerates the separation growth according to the shear mode.

A Study on The Degradation Characteristics of MLCCs SAC305 Lead-Free Solder Joints and Growth IMCs by Thermal Shock Test (열충격 시험을 통한 MLCCs SAC305 무연 솔더 접합부의 IMCs 성장과 접합특성 저하에 관한 연구)

  • Jung, Sang-Won;Kang, Min-Soo;Jeon, Yu-Jae;Kim, Do-Seok;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.152-158
    • /
    • 2016
  • The bonding characteristics of MLCCs (multi layer ceramic capacitor, C1608) lead-free solder (SAC305) joints were evaluated through thermal shock test ($-40^{\circ}C{\sim}125^{\circ}C$, total 1,800 cycle). After the test, IMCs( intermetallic compounds) growth and cracks were verified, also shear strengths were measured for degradation of solder joints. In addition, The thermal stress distributions at solder joints were analyzed to compare the solder joints changes before and after according to thermal shock test by FEA (finite elements analysis). We considered the effects of IMCs growth at solder joints. As results, the bonding characteristics degradation was occurred according to initial crack, crack propagations and thermal stress concentration at solder-IMCs interface, when the IMCs grown to solder inside.

Fracture mechanical evaluation of fatigue strength of a single spot welded lap joint under tension-shear load (인장-전단하중을 받는 일점 Spot용접재의 파괴역학적 피로강도 평가)

  • 배동호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.42-50
    • /
    • 1991
  • According as the members and inner and outer plates of the automobile body structure have been thinned their thickness and have become high strength, each part of the body structure has been put more severe stress condition. Therefore, it has been increasingly required to improve the fatigue strength of the spot welded structures. As one of the improving methods for such problem, the author had previously proposed the method of alleviating stress concentration at nugget edge of the spot weld part and improving its fatigue strength [1]. But, because fatigue strength of the spot welded lap joint is influenced by its geometrical and mechanical factors, welding condition and etc., there needs a quantitative and systematic estimation method of them. In this report, by considering nugget edge of the spot weld part of the spot welded lap joint subjected to tensile load to the ligament crack, fatigue strength of various spot welded lap joints was estimated with the stress intensity factor (S.I.F.) K which is fracture mechanical parameter. It is known that evaluation of fatigue strength of the spot welded lap joint by the stress intensity factor (S.I.F.) K is more effective than the maximum stress $(\sigma_{ymax}$) at edge of the spot weld part on the center line of width of the plate.

  • PDF

Shear Strength Evaluation of Prestressed Concrete Beams without Shear Reinforcement (전단철근이 배치되지 않은 프리스트레스트된 콘크리트 보의 전단강도 평가)

  • Ju, Hyunjin;Lee, Deuckhang;Lee, Changjoon;Lee, Jun-Cheol;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.37-42
    • /
    • 2022
  • The dual potential capacity model (DPCM) was extended to be suitable for evaluation of the shear strength of prestressed concrete (PSC) members in the previous study. This paper aims to simplify the DPCM for its better application in practice. To this end, a total of 172 shear test results of PSC members without shear reinforcement were collected from existing studies. The collected shear test results include PSC members with various section types and prestressing methods. It appeared that the simplified model could provide a good level of estimation accuracy of shear strength of PSC members, and it was comparable with that provided from the original DPCM.

Effects of the buried lamellar tears on the mechanical strength in the welded T joints (T형상용접 이음에서 매몰된 라멜라균열이 용접부의 기계적 강도에 미치는 영향)

  • 고진현
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.44-53
    • /
    • 1988
  • The mechanical strengths of buried lamellar tears located near the weld toe in the welded tee joints were evaluated in terms of the loss of load carrying capacity as a function of tear area. In static loading, the load carrying capacity was significantly reduced when tear intercepted over 10% of the cross-sectional area of the welded joints. However, the welded joints containing buried tears still failed at stresses over the yield strength of the base metal in the through-thickness direction in spite of the presence of tears up to 20-25% of the area. Fatigue strength of welded joints containing tears markedly reduced with increasing tear areas. Lehigh lamellar tearing test used in this study to produce speicmens was described in detail. The load carrying cpapacity in static loading was influenced by the reduction of supporting area whereas that in fatigue loading was influenced by the stress-concentration effects of lamellar tears and the reduction of supporting area. In bend tests, the pre-existing lamellar tears always grew up toward the weld toe. However, in fatigue loading, cracks grew up and down simultaneously form both the weld toe and the top of lamellar tears because of stress concentration. In fatigue loading, delaminations and decohesion of inclusion/matrix interface generated in multipass welds provided crack propagation paths and enhanced crack propagation because the tips of delaminations and deconhesios acted as stress raisers.

  • PDF

On transverse matrix cracking in composite laminates loaded in flexure under transient hygrothermal conditions

  • Khodjet-Kesba, M.;Benkhedda, A.;Adda Bedia, E.A.;Boukert, B.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.165-173
    • /
    • 2018
  • A simple predicted model using a modified Shear-lag method was used to represent the moisture absorption effect on the stiffness degradation for $[0/90]_{2s}$ composite laminates with transverse cracks and under flexural loading. Good agreement is obtained by comparing the prediction model and experimental data published by Smith and Ogin (2000). The material properties of the composite are affected by the variation of temperature and moisture absorption. The transient and non-uniform moisture concentration distribution give rise to the transient elastic moduli of cracked composite laminates. The hygrothermal effect is taken into account to assess the changes in the normalised axial and flexural modulus due to transverse crack. The obtained results represent well the dependence of the stiffness properties degradation on the cracks density, moisture absorption and operational temperature. The composite laminate with transverse crack loaded in axial tension is more affected by the hygrothermal condition than the one under flexural loading. Through this theoretical study, we hope to contribute to the understanding of the moisture absorption on the composite materials with matrix cracking.

Strength characteristics and fracture evolution of rock with different shapes inclusions based on particle flow code

  • Xia, Zhi G.;Chen, Shao J.;Liu, Xing Z.;Sun, Run
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.461-473
    • /
    • 2020
  • Natural rock mass contains defects of different shapes, usually filled with inclusions such as clay or gravel. The presence of inclusions affects the failure characteristics and mechanical properties of rock mass. In this study, the strength and failure characteristics of rock with inclusions were studied using the particle flow code under uniaxial compression. The results show that the presence of inclusions not only improves the mechanical properties of rock with defects but also increases the bearing capacity of rock. Circular inclusion has the most obvious effect on improving model strength. The inclusions affect the stress distribution, development of initial crack, change in crack propagation characteristics, and failure mode of rock. In defect models, concentration area of the maximum tensile stress is generated at the top and bottom of defect, and the maximum compressive stress is distributed on the left and right sides of defect. In filled models, the tensile stress and compressive stress are uniformly distributed. Failing mode of defect models is mainly tensile failure, while that of filled models is mainly shear failure.

A Study on the Damage of the Three Storied Stone Pagoda of Bulguksa Temple in GyeongJu (경주 불국사 삼층석탑(석가탑) 파손원인에 관한 연구)

  • Ji, Sung-Jin
    • Journal of architectural history
    • /
    • v.22 no.6
    • /
    • pp.47-58
    • /
    • 2013
  • The purpose of this study is to analyze the cause of damage to the three storied stone pagoda of Bulguksa temple in GyeongJu. This report is attempted to making reinforcement and conservation plan through investigating and analyzing the cause of damage to that. The damage is caused by occurring of stress, degrading of stone strength, changing of underground soil structure, natural disasters and so on. Compressive stress, shear stress, bending stress and lateral pressure affected to the pagoda since built up. Ultrasonic examination data tells the strength of the stone. According to this result, strength of the stereobate stone materials is enough to support the weight of the upper ones. But we could found many other factors of the damage could consider, for example the problems occurred on building the pagoda construction and the weakness of the stone material(soft rock). And many environmental factors being changed in soil structure(subsidence of soil and degradation of bearing power of soil and freezing and melting of soil) can be seen as the cause of the damage. Natural disasters like earthquake, lightning and heavy rain were also thought to give direct impact to the damage. At last Concentration of compressive stress caused the crack and exfoliation on the stone materials and shear stress, bending stress and lateral pressure were main causes of the stereobate stone materials shearing.