Browse > Article
http://dx.doi.org/10.12989/gae.2020.22.5.461

Strength characteristics and fracture evolution of rock with different shapes inclusions based on particle flow code  

Xia, Zhi G. (State Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology)
Chen, Shao J. (State Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology)
Liu, Xing Z. (School of Civil Engineering, Ludong University)
Sun, Run (Yantai Institute of Metrology)
Publication Information
Geomechanics and Engineering / v.22, no.5, 2020 , pp. 461-473 More about this Journal
Abstract
Natural rock mass contains defects of different shapes, usually filled with inclusions such as clay or gravel. The presence of inclusions affects the failure characteristics and mechanical properties of rock mass. In this study, the strength and failure characteristics of rock with inclusions were studied using the particle flow code under uniaxial compression. The results show that the presence of inclusions not only improves the mechanical properties of rock with defects but also increases the bearing capacity of rock. Circular inclusion has the most obvious effect on improving model strength. The inclusions affect the stress distribution, development of initial crack, change in crack propagation characteristics, and failure mode of rock. In defect models, concentration area of the maximum tensile stress is generated at the top and bottom of defect, and the maximum compressive stress is distributed on the left and right sides of defect. In filled models, the tensile stress and compressive stress are uniformly distributed. Failing mode of defect models is mainly tensile failure, while that of filled models is mainly shear failure.
Keywords
inclusions; different shapes; strength characteristics; fracture evolution; numerical simulation;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Hoek, E. and Brown, E.T. (1980), Underground Excavations in Rock, Institute Mining and Metallurgy, CRC Press, London, U.K.
2 Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traversing a plate", J. Appl. Mech., 24, 361-364.   DOI
3 Itasca Consulting Group Inc. (2014), PFC (particle flow code), version 5.0, ICG, Minneapolis, Minnesota, U.S.A. http://www.itascacg.com/software/pfc.
4 Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type material under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9.   DOI
5 Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.   DOI
6 Janeiro, R.P. and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract Eng., 164(1), 83-102. https://doi.org/10.1007/s10704-010-9457-x.   DOI
7 Katcoff, C.Z. and Graham-Brady, L.L. (2014), "Modeling dynamic brittle behavior of materials with circular flaws or pores", Int. J. Solids Struct., 51(3-4), 754-766. https://doi.org/10.1016/j.ijsolstr.2013.11.004.   DOI
8 Komurlu, E., Kesimal, A. and Demir, S. (2016), "Experimental and numerical analyses on determination of indirect (splitting) tensile strength of cemented paste backfill materials under different loading apparatus", Geomech. Eng., 10(6), 775-791. https://doi.org/10.12989/gae.2016.10.6.775.   DOI
9 Lee, J. and Hong, J.W. (2018), "Crack initiation and fragmentation processes in pre-cracked rock-like materials", Geomech. Eng., 15(5), 1047-1059. https://doi.org/10.12989/gae.2018.15.5.1047.   DOI
10 Lisjak, A. and Grasselli, G. (2014), "A review of discrete modeling techniques for fracturing processes in discontinuous rock mass", J. Rock Mech. Geotech. Eng., 6(4), 301-314. https://doi.org/10.1016/j.jrmge.2013.12.007.   DOI
11 Wang, X., Yuan, W., Yan, Y. and Zhang, X. (2020), "Scale effect of mechanical properties of jointed rock mass: A numerical study based on particle flow code", Geomech. Eng., 21(3), 259-268. https://doi.org/10.12989/gae.2020.21.3.259.   DOI
12 Maji, A.K. and Shah, S.P. (1989), "Application of acoustic emission and laser holography to study microfracture in concrete", Acids Spec. Publ., 112, 83-110.
13 Miao, S.T., Pan, P.Z., Wu, Z.H. and Zhao, S.K. (2018), "Fracture analysis of sandstone with a single filled flaw under uniaxial compression", Eng. Fract. Mech., 204, 19-343. https://doi.org/10.1016/j.engfracmech.2018.10.009.
14 Morgan, S.P. and Einstein, H.H. (2017), "Cracking processes affected by bedding planes in Opalinus shale with flaw pairs", Eng. Fract. Mech., 176, 213-234. https://doi.org/10.1016/j.engfracmech.2017.03.003.   DOI
15 Sammis, C.G. and Ashby, M.F. (1986), "The failure of brittle porous solids under compressive stress states", Acta Metall., 34(3), 511-526. https://doi.org/10.1016/0001-6160(86)90087-8.   DOI
16 Tasdemir, M.A., Maji, A.K. andShah, S.P. (1989), "Crack propagation in concrete under compression", J. Eng. Mech., 116(5), 1058-1076. https://doi.org/10.1061/(asce)0733-9399(1990)116:5(1058).   DOI
17 Wen, Z.J., Wang, X. Chen, L.J., Lin, G. and Zhang, H.L. (2017), "Size effect on acoustic emission characteristics of coal-rock damage evolution", Adv. Mater. Sci. Eng., 3472485. https://doi.org/10.1155/2017/3472485
18 Wong, R.H. and Lin, P. (2015), "Numerical study of stress distribution and crack coalescence mechanisms of a solid containing multiple holes", Int. J. Rock Mech. Min. Sci., 79, 41-54. https://doi.org/10.1016/j.ijrmms.2015.08.003.   DOI
19 Wu, M. and Wang, J. (2020), "A DEM investigation on crushing of sand particles containing intrinsic flaws", Soils Found., 60(2), 567-572. https://doi.org/10.1016/j.sandf.2020.03.007.
20 Wu, M., Wang, J., Russell, A. and Cheng, Z. (2020), "DEM modelling of mini-triaxial test based on one-to-one mapping of sand particles", Geotechnique, 1-14. https://doi.org/10.1680/jgeot.19.P.212.
21 Gratchev, I., Dong, H.K. and Chong, K.Y. (2016), "Strength of rock-like specimens with preexisting cracks of different length and width", Rock Mech. Rock. Eng., 49(11), 4491-4496. https://doi.org/10.1007/s00603-016-1013-1.   DOI
22 Cao, R.H., Cao, P., Lin, H., Pu, C.Z. and Ou, K. (2016), "Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: Experimental studies and particle mechanics approach", Rock Mech. Rock Eng., 49, 763-783. https://doi.org/10.1007/s00603-015-0779-x.   DOI
23 Carter, B.J., Lajtai, E.Z. and Petukhov, A. (2010), "Primary and remote fracture around underground cavities", Int. J. Numer. Anal. Meth. Geomech., 15, 21-40. https://doi.org/10.1002/nag.1610150103.   DOI
24 Castro-Filgueira, U., Alejano, L.R., Arzúa, J. and Ivars, D.M. (2017), "Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks", Proc. Eng., 191, 488-495. https://doi.org/10.1016/j.proeng.2017.05.208.   DOI
25 Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 97-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002.
26 Feng, F., Chen, S.J., Li, D.Y., Hu, S.T., Huang, W.P. and Li, B. (2019), "Analysis of fractures of a hard rock specimen via unloading of central hole with different sectional shapes", Energy Sci. Eng., 7(6), 2265-2286. https://doi.org/10.1002/ese3.432.   DOI
27 Griffith, A.A. (1920), "The phenomenon of rupture and flow in solids", Philos. Trans. A., 221, 163-198.
28 Hadi, H., Alireza, K. and Mohammad, F.M. (2015), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sin., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3.   DOI
29 Hazzard, J.F., Young, R.P. and Maxwell, S.C. (2000), "Micromechanical modeling of cracking and failure in brittle rocks", J. Geophys. Res. Solid Earth, 105(B7),16683-16697. https://doi.org/10.1029/2000JB900085.   DOI
30 Wu, N., Liang, Z.Z., Zhou, J.R. and Zhang, L.Z. (2020), "Energy evolution characteristics of coal specimens with preformed holes under uniaxial compression", Geomech. Eng., 20(1), 55-66. https://doi.org/10.12989/gae.2020.20.1.055.   DOI
31 Zaitsev, Y.B. and Wittmann, F.H. (1981), "Simulation of crack propagation and failure of concrete", Mater. Struct., 83(14), 357-365. https://doi.org/10.1007/BF02478729.
32 Zhao, J.H., Zhang, X.G., Jiang, N., Yin, L.M. and Guo, W.J. (2020), "Porosity zoning characteristics of fault floor under fluid-solid coupling", B. Eng. Geol. Environ., 79(5), 2529-2541. https://doi.org/10.1007/s10064-019-01701-0.   DOI
33 Zhu, Q.Q., Li, D.Y., Han, Z.Y., Li, X.B and Zhou, Z.L. (2019), "Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression", Int. J. Rock Mech. Min. Sci., 115, 33-47. https://doi.org/10.1016/j.ijrmms.2019.01.010.   DOI