DOI QR코드

DOI QR Code

Shear Strength Evaluation of Prestressed Concrete Beams without Shear Reinforcement

전단철근이 배치되지 않은 프리스트레스트된 콘크리트 보의 전단강도 평가

  • 주현진 (한경대학교 디자인건축융합학부) ;
  • 이득행 (충북대학교 건축공학과) ;
  • 이창준 (충북대학교 건축공학과) ;
  • 이준철 (서원대학교 건축학과) ;
  • 김강수 (서울시립대학교 건축공학과)
  • Received : 2022.01.05
  • Accepted : 2022.04.06
  • Published : 2022.04.30

Abstract

The dual potential capacity model (DPCM) was extended to be suitable for evaluation of the shear strength of prestressed concrete (PSC) members in the previous study. This paper aims to simplify the DPCM for its better application in practice. To this end, a total of 172 shear test results of PSC members without shear reinforcement were collected from existing studies. The collected shear test results include PSC members with various section types and prestressing methods. It appeared that the simplified model could provide a good level of estimation accuracy of shear strength of PSC members, and it was comparable with that provided from the original DPCM.

이전 연구에서는 전단철근이 배치되지 프리스트레스트 콘크리트 (Prestressed Concrete, PSC) 부재의 전단강도를 평가하기 위하여 이중잠재강도모델 (Dual potential capacity model, DPCM)이 개발되었다. 그러나 기존의 DPCM은 PSC 부재의 전단강도를 산정하기 위하여 복잡한 반복계산이 요구되며, 이 같은 이유로 DPCM의 실무적용이 어려운 실정이다. 이 연구의 목표는 기존의 DPCM을 현행 건축구조설계실무에서 적용할 수 있도록 단순화하는 것이다. 이를 위해 기존 연구로 부터 총 172개의 PSC 부재의 전단실험 결과를 수집하였다. 수집된 전단실험 결과들은 다양한 단면형태와 프레스트레싱 특성을 갖는 PSC 부재들을 포함한다. 이 연구를 제시하는 단순화된 DPCM은 상당한 정확도로 PSC 부재들의 전단강도를 평가할 수 있는 것으로 나타났다.

Keywords

Acknowledgement

이 논문은 충북대학교 국립대학육성사업(2021)지원을 받아 작성되었음 (과제제목: 기계학습모델을 활용한 콘크리트 구조물의 전단에 의한 붕괴메커니즘 규명).

References

  1. Choi, K. K., Taha, M. M. R., and Sherif, A. G. (2007), Simplified Punching Shear Design Method for Slab-Column Connections Using Fuzzy Learning, ACI Structural Journal, 104(4), 438-447.
  2. Comete European de Normalisation (2004), Eurocode 2: design of concrete structures. Part 1-general rules and rules for buildings, prEN 1992.1.
  3. CSA Committee A23.3-14. (2014), Design of Concrete Structures (CAN/CSA-A23.3.14). Canada: Canadian Standards Association.
  4. Lee, D. H. (2015), Unified Theory for Shear Capacity of Concrete Members: Dual Potential Capacity Model, PhD dissertation, Dept. of Architectural Engineering, University of Seoul.
  5. Lee, D. H., Han, S. J., and Kim, K. S. (2016), Dual Potential Capacity Model for Reinforced Concrete Beams Subjected to Shear, Structural Concrete, 17(3), 443-456. https://doi.org/10.1002/suco.201500165
  6. Lee, D. H., Han, S. J., Hwang, J. H., Ju, H., and Kim, K. S. (2017a), Simplification and Verification of Dual Potential Capacity Model for Reinforced Concrete Beams Subjected to Shear, Structural Concrete, 18(2), 259-277. https://doi.org/10.1002/suco.201600055
  7. Lee, D. H., Han, S. J., Kim, K. S., and LaFave, J. M. (2017b), Shear Strength of Reinforced Concrete Beams Strengthened in Shear Using Externally-Bonded FRP Composites, Composite Structures, 173(1), 177-187. https://doi.org/10.1016/j.compstruct.2017.04.025
  8. Lee, D. H., Kim, K. S., Han, S. J., Zhang, D., and Kim, J. (2018), Dual Potential Capacity Model for Reinforced Concrete Short and Deep Beams Subjected to Shear, Structural Concrete, Special Issue on Shear, 19(1), 76-85. https://doi.org/10.1002/suco.201700202
  9. Lee, D. H., Han, S. J., Joo, H. E., Kim, K. S., Zhang, D., and Kim, J. (2020), Shear Crack Concentration in Reinforced Concrete Beam Subjected to Combined Shear and Flexure, Advances in Structural Engineering, 23(11), 2305-2317. https://doi.org/10.1177/1369433219895911
  10. Ju, H., Lee, D. H., Park, M. K., and Memon, S. A. (2021a), Punching Shear Strength Model for Reinforced Concrete Flat Slab-Column Connection without Shear Reinforcement, Journal of Structural Engineering, ASCE., 147(3), 1-14.
  11. Lee, D. H., Han, S. J., Ju, H., and Kim, K. S. (2021b), Shear Strength of Prestressed Concrete Beams Considering Bond Mechanism in Reinforcement, ACI Structural Journal, 118(3), 267-277.
  12. Muttoni, A. and Fernandez Ruiz, M. (2008), Shear Strength of Members without Transverse Reinforcement as a Function of the Critical Shear Crack Width, ACI Structural Journal, 105(2), 163-172.
  13. Sozen, M. A., Zwoyer, E. M., Siess. C. P. (1959), Investigation of Prestressed Concrete for Highway Bridge, Part I - Strength in Shear of Beams without Web Reinforcement, Engineering Experiment Station, Bulletin No. 452, University of Illinois at Urbana-Champaign.
  14. MacGregor, J. G. (1960), Strength and Behavior of Prestressed Concrete Beams with Web Reinforcement, Doctorate Thesis, University of Illinois, 295 pp.
  15. Zwoyer, E. M., (1953), Shear Strength of Simply-Supported Prestressed Concrete Beams, Structural Research Series No. 53, University of Illinois.
  16. Cederwall, K., Hedman, O., and Loeberg, A. (1974), Shear Strength of Partially Prestressed Beams with Pretensioned Reinforcement of High Grade Deformed Bars, ACI Special Publication 42-9, 215-230.
  17. Evans, R. H. and Schumacher, E. G. (1963), Shear Strength of Prestressed Beams without Web Reinforcement, ACI Journal, Proceedings, 60(11), 1621-1642.
  18. Mahgoub, M. O. (1975), Shear Strength of Prestressed Concrete Beams without Web Reinforcement, Magazine of Concrete Research, 27(93), 219-228. https://doi.org/10.1680/macr.1975.27.93.219
  19. Kar, J. N., (1969), Shear Strength of Prestressed Beams without Web Reinforcement, Magazine of Concrete Research, 21(68), 159-170. https://doi.org/10.1680/macr.1969.21.68.159
  20. Elzanty, A. H., Nilson, A. H., and Slate, F. O. (1986), hear Capacity of Prestressed Concrete Beams Using High-Strength Concrete, ACI Journal, Proceedings, 83(2), 290-296.
  21. Moayer, M., and Regan, P. E. (1974), Shear Strength of Prestressed and Reinforced Concrete T-Beams, ACI SP 42-8, Detroit, American Concrete Institute, 183-213.
  22. Durrani, A. J., and Robertson, I. N. (1987), Shear Strength of Prestressed Concrete T Beams with Welded Wire Fabric as Shear Reinforcement, PCI Journal, 32(2), 46-61. https://doi.org/10.15554/pcij.03011987.46.61
  23. Walraven, J. C. and Mercx, W. P. M. (1983), The Bearing Capacity of Prestressed Hollow-Core Slabs, Heron, 28(3), 1-46.
  24. MacGregor, J. G. (1960), Strength and Behavior of Prestressed Concrete Beams with Web Reinforcement, Doctorate Thesis, University of Illinois, 295 pp.
  25. Sun, S., Kuchma, D. A., and Kim, K. S. (2009), Analysis of Photo-Graphically Measured Crack Development from Shear Test on Large Bridge Girder, PCI Journal, 39(3), 2-19.
  26. Reineck, K. H. (1991), Ultimate Shear Force of Structural Concrete Members without Transverse Reinforcement Derived from Mechanical Model, ACI Structural Journal, 88(5), 592-602.
  27. Vecchio FJ, Collins MP. The modified compression field theoryfor reinforced concrete elements subjected to shear. J Am Concr Inst. 1986;83(2):219.31.