• 제목/요약/키워드: Shear buckling behavior

검색결과 217건 처리시간 0.021초

Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory

  • Zenkour, A.M.;Aljadani, M.H.
    • Advances in aircraft and spacecraft science
    • /
    • 제5권6호
    • /
    • pp.615-632
    • /
    • 2018
  • Mechanical buckling of a rectangular functionally graded plate is obtained in the current paper using a refined higher-order shear and normal deformation theory. The impact of transverse normal strain is considered. The material properties are microscopically inhomogeneous and vary continuously based on a power law form in spatial direction. Navier's procedure is applied to examine the mechanical buckling behavior of a simply supported FG plate. The mechanical critical buckling subjected to uniaxial and biaxial compression loads are determined. The numerical investigation are compared with the numerical results in the literature. The influences of geometric parameters, power law index and different loading conditions on the critical buckling are studied.

Buckling analysis of noncontinuous linear and quadratic axially graded Euler beam subjected to axial span-load in the presence of shear layer

  • Heydari, Abbas
    • Advances in Computational Design
    • /
    • 제5권4호
    • /
    • pp.397-416
    • /
    • 2020
  • Functionally graded material (FGM) illustrates a novel class of composites that consists of a graded pattern of material composition. FGM is engineered to have a continuously varying spatial composition profile. Current work focused on buckling analysis of beam made of stepwise linear and quadratic graded material in axial direction subjected to axial span-load with piecewise function and rested on shear layer based on classical beam theory. The various boundary and natural conditions including simply supported (S-S), pinned - clamped (P-C), axial hinge - pinned (AH-P), axial hinge - clamped (AH-C), pinned - shear hinge (P-SHH), pinned - shear force released (P-SHR), axial hinge - shear force released (AH-SHR) and axial hinge - shear hinge (AH-SHH) are considered. To the best of the author's knowledge, buckling behavior of this kind of Euler-Bernoulli beams has not been studied yet. The equilibrium differential equation is derived by minimizing total potential energy via variational calculus and solved analytically. The boundary conditions, natural conditions and deformation continuity at concentrated load insertion point are expressed in matrix form and nontrivial solution is employed to calculate first buckling loads and corresponding mode shapes. By increasing truncation order, the relative error reduction and convergence of solution are observed. Fast convergence and good compatibility with various conditions are advantages of the proposed method. A MATLAB code is provided in appendix to employ the numerical procedure based on proposed method.

전단변형을 고려한 적층복합 I형 박벽보의 좌굴해석 (Buckling Analysis of Thin-Walled Laminated Composite I-Beams Including Shear Deformation)

  • 백성용;이승식;박용명
    • 한국강구조학회 논문집
    • /
    • 제18권5호
    • /
    • pp.575-584
    • /
    • 2006
  • 본 연구에서는 압축력을 받는 적층복합 I형 박벽보의 좌굴해석을 위한 전단변형을 고려한 유한요소 모델을 제안한다. 직교좌표계에 근거로 변위장은 1차 전단변형을 고려한 보 이론을 사용하여 정의된다. 유도된 요소는 휨 전단변형과 ? 비틂에 의한 영향을 고려한다. 지배방정식을 풀기 위하여 본 유한요소에서는 2절점, 3절점, 4절점의 세 가지 보요소를 제안하였다. 선형 좌굴문제를 풀기 위하여 이동기법을 의한 역방향 반복법을 사용하였다. 적층복합 I형 박벽보의 좌굴거동에 전단 유연성과 파이버 방향성의 중요도를 조사하기 위하여 매개변수 해석을 수행하였다. 본 연구의 전단변형을 고려한 모델은 다른 연구자의 수치해석 결과와 유한요소해에 잘 일치하는 것을 확인하였다.

강합성 박스거더 복부판의 탄성전단강도 연구 (Elastic Shear Buckling Strength of Steel Composite Box Girder Web Panel)

  • 김대혁;한상윤;김정훈;강영종
    • 복합신소재구조학회 논문집
    • /
    • 제4권3호
    • /
    • pp.30-37
    • /
    • 2013
  • It is same such as the provision of shear buckling strength of steel composite box girder web panel and plate girder web panel in Korea Highway Bridge Design Standards(2012). But the web panel of steel composite box girder is different from the web of plate girder in that the upper slab and lower flange are connected to the web. So a different shear behavior of the girders is expected. In this study, To calculate a reasonable elastic shear buckling strength of steel composite box girder web panel, ABAQUS program was used. The results from F.E.A and previous studies are compared. It is shown that the web shear buckling strength of steel composite box girder of Korea Highway Bridge Design Standards(2012) is the most conservative.

Experimental study on shear behavior of I-girder with concrete-filled tubular flange and corrugated web

  • Shao, Y.B.;Wang, Y.M.
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1465-1486
    • /
    • 2016
  • Conventional plate I-girders are sensitive to local buckling of the web when they are subjected mainly to shear action because the slenderness of the web in out-of-plane direction is much bigger. The local buckling of the web can also cause the distorsion of the plate flange under compression as a thin-walled plate has very low torsional stiffness due to its open section. A new I-girder consisted of corrugated web, a concrete-filled rectangular tubular flange under compression and a plate flange under tension is presented to improve its resistance to local buckling of the web and distorsion of the flat plate flange under compression. Experimental tests on a conventional plate I-girder and a new presented I-girder are conducted to study the failure process and the failure mechanisms of the two specimens. Strain developments at some critical positions, load-lateral displacement curves, and load-deflection curves of the two specimens have all be measured and analyzed. Based on these results, the failure mechanisms of the two kinds of I-girders are discussed.

비드와 원공을 갖는 복합재 평판의 전단 좌굴 실험에 관한 연구 (An Experimental Study on the Shear Buckling of a Composite Plate with Bead and Hole)

  • 임효식;김주언;황정선
    • 한국군사과학기술학회지
    • /
    • 제3권1호
    • /
    • pp.146-154
    • /
    • 2000
  • Buckling behavior was studied for the square plate with bead and hole under shear load. Plates were made to examine the effect of bead and hole to the material, aluminum and composite, the effect of flange angle, bead height and bead radius of curvature. There was little difference between buckling loads obtained by the experiment and Rayleigh-Ritz method to the plate. Buckling load could be increased highly when stress concentration to the hole was dispersed effectively using flange. A well-designed plate using bead and flange showed 3 times as much as stiffness to the plate without bead and flange.

  • PDF

Buckling analysis of partially embedded pile in elastic soil using differential transform method

  • Catal, Seval;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • 제24권2호
    • /
    • pp.247-268
    • /
    • 2006
  • The parts of pile, above the soil and embedded in the soil are called the first region and second region, respectively. The forth order differential equations of both region for critical buckling load of partially embedded pile with shear deformation are obtained using the small-displacement theory and Winkler hypothesis. It is assumed that the behavior of material of the pile is linear-elastic and that axial force along the pile length and modulus of subgrade reaction for the second region to be constant. Shear effect is included in the differential equations by considering shear deformation in the second derivative of the elastic curve function. Critical buckling loads of the pile are calculated for by differential transform method (DTM) and analytical method, results are given in tables and variation of critical buckling loads corresponding to relative stiffness of the pile are presented in graphs.

Bi-axial and shear buckling of laminated composite rhombic hypar shells

  • Chaubey, Abhay K.;Raj, Shubham;Tiwari, Pratik;Kumar, Ajay;Chakrabarti, Anupam;Pathak, K.K.
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.227-241
    • /
    • 2020
  • The bi-axial and shear buckling behavior of laminated hypar shells having rhombic planforms are studied for various boundary conditions using the present mathematical model. In the present mathematical model, the variation of transverse shear stresses is represented by a second-order function across the thickness and the cross curvature effect in hypar shells is also included via strain relations. The transverse shear stresses free condition at the shell top and bottom surfaces are also satisfied. In this mathematical model having a realistic second-order distribution of transverse shear strains across the thickness of the shell requires unknown parameters only at the reference plane. For generality in the present analysis, nine nodes curved isoparametric element is used. So far, there exists no solution for the bi-axial and shear buckling problem of laminated composite rhombic (skew) hypar shells. As no result is available for the present problem, the present model is compared with suitable published results (experimental, FEM, analytical and 3D elasticity) and then it is extended to analyze bi-axial and shear buckling of laminated composite rhombic hypar shells. A C0 finite element (FE) coding in FORTRAN is developed to generate many new results for different boundary conditions, skew angles, lamination schemes, etc. It is seen that the dimensionless buckling load of rhombic hypar increases with an increase in c/a ratio (curvature). Between symmetric and anti-symmetric laminations, the symmetric laminates have a relatively higher value of dimensionless buckling load. The dimensionless buckling load of the hypar shell increases with an increase in skew angle.

Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov's foundation

  • Bamdad, Mostafa;Mohammadimehr, Mehdi;Alambeigi, Kazem
    • Steel and Composite Structures
    • /
    • 재36권6호
    • /
    • pp.671-687
    • /
    • 2020
  • The aim of this research is to analyze buckling and bending behavior of a sandwich Reddy beam with porous core and composite face sheets reinforced by boron nitride nanotubes (BNNTs) and shape memory alloy (SMA) wires resting on Vlasov's foundation. To this end, first, displacement field's equations are written based on the higher-order shear deformation theory (HSDT). And also, to model the SMA wire properties, constitutive equation of Brinson is used. Then, by utilizing the principle of minimum potential energy, the governing equations are derived and also, Navier's analytical solution is applied to solve the governing equations of the sandwich beam. The effect of some important parameters such as SMA temperature, the volume fraction of SMA, the coefficient of porosity, different patterns of BNNTs and porous distributions on the behavior of buckling and bending of the sandwich beam are investigated. The obtained results show that when SMA wires are in martensite phase, the maximum deflection of the sandwich beam decreases and the critical buckling load increases significantly. Furthermore, the porosity coefficient plays an important role in the maximum deflection and the critical buckling load. It is concluded that increasing porosity coefficient, regardless of porous distribution, leads to an increase in the critical buckling load and a decrease in the maximum deflection of the sandwich beam.

국부좌굴 현상을 고려한 강판 콘크리트 패널의 효율적인 스터드 배치 간격 설정 (Determination of Efficient Shear Stud Spacing in Steel-Concrete Panel(SCP) considering Local Buckling Behavior)

  • 김정래;이원호;곽효경
    • 한국전산구조공학회논문집
    • /
    • 제30권6호
    • /
    • pp.479-484
    • /
    • 2017
  • 본 논문에서는 국부좌굴 현상을 고려하여 강판 콘크리트 패널(SCP)의 유한요소 해석을 수행하고 설계지침과 비교하여 전단 스터드의 효율적인 스터드 배치 간격을 연구하였다. 강판 콘크리트 구조의 설계 및 기술기준은 전단 균열의 전개와 국부 좌굴 현상을 방지하기 위하여 스터드의 최대 간격을 제한하고 있으나 이는 기존 강재-콘크리트 합성 구조의 설계기준을 토대로 산정되었다. 이에 유한요소 해석 프로그램을 이용한 강판 및 SCP의 국부좌굴 부재 해석을 통하여 스터드 최대 배치 간격을 구하고 설계지침에서 제시한 값과 비교하였다. 먼저, 단일 강판에 대하여 국부좌굴 해석을 수행하여 판좌굴 이론과 비교 검증하였고, 연속적인 스터드 배치에 따른 영향을 확인하기 위하여 다수의 강판이 연결된 경우에 대하여 해석을 수행하였다. 또한 강판 콘크리트 구조에서 콘크리트의 영향 및 합성 거동에 따른 영향을 확인하기 위하여 강판 콘크리트 구조를 모델링하고, 국부좌굴이 발생하지 않는 스터드 배치 최대 간격을 구하여 설계지침과 비교하였다.