• 제목/요약/키워드: Shear bond

검색결과 977건 처리시간 0.029초

수종의 의치상 레진과 레진치아의 전단결합강도에 관한 연구 (A Study on the Shear Bond Strength between Various Denture Bases Resin and Artificial Resin Teeth)

  • 이상욱;조인호;이준석
    • 구강회복응용과학지
    • /
    • 제21권1호
    • /
    • pp.59-67
    • /
    • 2005
  • The bond strength of denture base resin and resin teeth, is an important factor in the long term prognosis of dentures. The purpose of this study is to find an appropriate combination of commercial denture base resin and artificial resin teeth according to shear bond strength. In this study, the shear bond strength of various denture base resins (Vertex $RS^{(R)}$(Dentimax Ziest, Holland), $PERform^{(R)}$(Hedent GmbH., Germany), SR $IVOCAP^{(R)}$(Ivoclar AG, Schaan, Liechtenstein)) and resin teeth (SR Orthosit PE(Ivoclar AG, Schaan, Liechtenstein), $Trubyte^{(R)}$ $Biotone^{(R)}$(Dentsply, U.S.A.)) was evaluated. 1. In comparison of denture resin, the shear bond strength increased in the order of $IVOCAP^{(R)}$, $PERform^{(R)}$, Vertex $RS^{(R)}$. 2. In resin teeth, $Trubyte^{(R)}$ $Biotone^{(R)}$ showed higher strength, but there was no statistical difference between the groups. 3. According to loading direction, the lingual showed higher strength, but there was no statistical difference. 4. When using SR Orthosit PE, SR $IVOCAP^{(R)}$ showed significantly higher shear bond strength(p<0.05). 5. Fracture tendancy showed more cohesive fractures(59) than adhesive failures(13). $IVOCAP^{(R)}$ showed the most superior results statistically. $Trubyte^{(R)}Biotone^{(R)}$ showed the highest shear bond strength. When using the SR Orthosit PE, it is thought that $IVOCAP^{(R)}$ would present the most superior results.

금속면의 표면처리 방법에 따른 금합금과 전장레진간의 전단결합강도에 관한 연구 (THE EFFECT OF DIFFERENT SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH OF THE RESIN TO TYPE IV GOLD ALLOY)

  • 박동원;임오남;우이형;최부병
    • 대한치과보철학회지
    • /
    • 제33권4호
    • /
    • pp.685-692
    • /
    • 1995
  • The effect of five different surface treatments on the shear bond strength of the resin bond to Type IV Gold alloy was studied by bonding resin to metal. The metal surface was subjected to one of the following treatments and bonded ;(1) air abraded with $50{\mu}m$ alumina particles,(2) beads(3) beads and tin-plated at curreant density of 300mA/$cm^2$,(4) tin-plated at current density of 300mA/$cm^2$,(5) silicacoating with sililink, and bonded with an MDP Opaque primer, CESEAD resin system. The bonded specimens were immersed in water for 23 hours after 1 hour resin curing and shear bond strength were recorded. On the basis of this study, the following conclusions can be drawn; 1. Difference were found in the shear bond strength among all experimental groups. And bead glroup exihibited the highest shear bond strength and sand blasting group exhibited the lowest shear bond strength on five groups. 2. Bead group, mechanical bonding was significantly higher than that obtained with the samples, tinplating, silicacoating, and chemical bonding. 3. No statistically signiflcant difference was found between the shear bond strengths obtained with bead and bead-tinplating, and between tinplating and sili cacoating.

  • PDF

Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material

  • Erdemir, Ugur;Sancakli, Hande Sar;Sancakli, Erkan;Eren, Meltem Mert;Ozel, Sevda;Yucel, Taner;Yildiz, Esra
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권6호
    • /
    • pp.434-443
    • /
    • 2014
  • PURPOSE. The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS. A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of $6mm{\times}4mm$ and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with $30{\mu}m$ silica oxide particles ($Cojet^{TM}$ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at ${\alpha}=.05$. RESULTS. Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION. Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used.

상아질의 치면 처리에 따른 합착용 레진 강화형 글라스 아이오노머 시멘트의 전단결합강도 (SHEAR BOND STRENGTH OF PRETREATED DENTIN SURFACE WITH RESIN-REINFORCED GLASS IONOMER CEMENT)

  • 최혜숙;이청희;조광헌
    • 대한치과보철학회지
    • /
    • 제39권5호
    • /
    • pp.502-513
    • /
    • 2001
  • The purpose of this study was to evaluate the effect of dentin pretreatment with Dentin Conditioner, Ultra-Etch, conditioner of Fuji Plus cement on the shear bond strength of resin-reinforced glass ionomer cements to dentin and analyze the fractured surfaces. To evaluate the bond strength, the extracted human teeth which had uniform area of exposed dentin were cemented with conventional glass ionomer cement, 3M $RelyX^{TM}$ Luting (Vitremer luting cement), Fuji Plus cement after dentin pretreatment. The shear bond strength was measured using the Universal testing machine (Instron Co., USA) with a crosshead speed of 1mm/m. The effect of dentin pretreatment was evaluated by observing pretreated dentin surfaces under the scanning electron microscope, measuring the shear bond strength and observing the fractured surfaces under the scanning electron microscope. The results were as follows : On the SEM observation of surface morphology, the specimens treated with Dentin Conditioner. Ultra-Etch and conditioner of Fuji Plus cement were removed the smear layer and funneled dentinal tubules in dentin surfaces. In $RelyX^{TM}$ Luting cement group, shear bond strength of pretreated group was significantly higher than control group. In Fuji Plus cement group and Fuji I group, regardless of the type of pretreatment agents, there was tendency of increase in the shear bond strength. On the SEM observation of fractured surfaces, as the shear bond strength increase, it were shown thicker cement layers and were not shown dentinal tubules According to these results. it were shown that dentin pretreatment have much effect on bonding states.

  • PDF

합착 술식에 따른 레진 합착제의 상아질에 대한 미세전단결합강도의 비교 연구 (Comparative evaluation of micro-shear bond strength between two different luting methods of resin cement to dentin)

  • 이윤정;박상진;최경규
    • Restorative Dentistry and Endodontics
    • /
    • 제30권4호
    • /
    • pp.283-293
    • /
    • 2005
  • 본 연구는 합착 술식에 따른 레진 합착제의 상아질에 대한 미세전단결합강도를 비교 연구하여 이중 접착 술식의 유용성을 평가하고자 시행되었다. 합착 술식은 전통 합착 술식과 이중 접착 술식, 임시 합착제는 Propac과 Freegenol, 상아질 접착제는 All-Bond 2, One-Step, Clearfil SE Bond를 사용하였다. 이중 접착 술식을 적용한 군에서만 상아질 접착제 처리 후, 모든 시편에 임시 합착제를 도포하였다. 이후 임시 합착제를 제거하고 상아질 접착제 적용 후 유리봉에 레진 합착제를 도포하여 상아질 면에 접착하였다. 미세전단결합 강도를 측정하고 접착 계면을 주사전자현미경으로 관찰하였다. 1. 전통 합착 술식이 이중 접착 술식보다 높은 미세전단결합강도를 보였으나 통계학적 유의 차가 없었다. 2. Freegenol이 Propac보다 높은 미세전단결합강도를 보였으나 유의차가 없었다. 3. 미세전단결합강도는 이중 접착 술식 을 적용한 경우 Clearfil SE Bond가 One-step, All-Bond 2보다 유의성 있게 높았으나(p<0.05) One-step, All-Bond 2 간 유의차는 없었다. 4. 전자현미경 소견에서 All-Bond 2와 One-Step을 사용한 군은 길고 수많은 resin tag가 관찰되었다. 본 연구 결과 전통 합착 술식과 비교하여 이중 접착 술식의 우수함을 확인하지 못하였다.

리튬디실리케이트 세라믹과 표면처리방법에 따른 라미네이트 베니어의 전단결합강도 비교 (Comparison of Shear Bonding Strength of Laminate Veneer by Lithium Disilicate Ceramics and Surface Treatment Methods)

  • 박상준;정인성
    • 대한치과기공학회지
    • /
    • 제41권3호
    • /
    • pp.177-185
    • /
    • 2019
  • Purpose: This study was to investigate the effect of three different surface treatments on the shear bond strength of lithium disilicate ceramics to enamel. Methods: Totally 60 lithium disilicate ceramic disc specimens were fabricated with IPS e.max press (Ivoclar Vivadent, Schaan, Liechtenstein) and Mazic Claro (Vericom, Korea). 30 specimens in each lithium disilicate ceramic were assigned to 3 groups of the each following surface treatment: 1) $50{\mu}m$ airborne particle abrasion+silane, 2) 9.5% hydroflouric acid etching (HF)+silane, 3) $50{\mu}m$ airborne particle abrasion+9.5% HF+silane. Lithium disilicate ceramic surfaces after surface treatments were AFM examined. The shear bond strength was measured in a universal testing machine at 0.5mm/min crosshead speed. All data were analyzed using a two-way ANOVA and Tukey's test(${\alpha}=0.05$). Results: The mean surface roughness of lithium disilicate ceramics ranged from $0.178{\mu}m$ to $0.441{\mu}m$. The mean shear bond strengths ranged from $23.81{\pm}2.78MPa$ to $33.99{\pm}4.85MPa$. Conclusion: 1. Mazic Claro showed higher shear bond strength than IPS e.max press at 3 different surface treatments, and no statistically significant was observed. 2. The shear bond strength of IPS e.max press was strongly enhanced as surface treated with $50{\mu}m$ airborne particle abrasion and 9.5% hydroflouric acid etching. And there was no statistical significance at the shear bond strength of Mazic Claro with surface treatments.

Crack development depending on bond design for masonry walls under shear

  • Ural, A.;Dogangun, A.
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.257-266
    • /
    • 2012
  • Walls are the most important vertical load-carrying elements of masonry structures. Their bond designs are different from one country to another. This paper presents the shear effects of some structural bond designs commonly used for masonry walls. Six different bond designs are considered and modeled using finite element procedures under lateral loading to examine the shear behavior of masonry walls. To obtain accurate results, finite element models are assumed in the inelastic region. Crack development patterns for each wall are illustrated on deformed meshes, and the numerical results are compared.

The effect of resin cement type and cleaning method on the shear bond strength of resin cements for recementing restorations

  • Koodaryan, Roodabeh;Hafezeqoran, Ali;Maleki, Amin Khakpour
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권2호
    • /
    • pp.110-117
    • /
    • 2017
  • PURPOSE. This laboratory study assessed the effect of different dentin cleaning procedures on shear bond strength of resin cements for recementing prosthesis. MATERIALS AND METHODS. A $4{\times}4$ flat surface was prepared on the labial surface of 52 maxillary central incisors. Metal frames ($4{\times}4{\times}1.5mm$) were cast with nickel-chromium alloy. All specimens were randomly divided into 2 groups to be cemented with either Panavia F2.0 (P) or RelyX Ultimate (U) cement. The initial shear bond strength was recorded by Universal Testing Machine at a crosshead speed of 0.5 mm/min. Debonded specimens were randomly allocated into 2 subgroups (n = 13) according to the dentin cleaning procedures for recementation. The residual cement on bonded dentin surfaces was eliminated with either pumice slurry (p) or tungsten carbide bur (c). The restorations were rebonded with the same cement and were subjected to shear test. Data failed the normality test (P < .05), thus were analyzed with Mann Whitney U-test, Wilcoxon signed rank test, and two-way ANOVA after logarithmic transformation (${\alpha}=.05$). RESULTS. The initial shear bond strength of group P was significantly higher than group U (P = .001). Pc and Uc groups presented higher bond strength after recementation compared to the initial bond strength. However, it was significant only in Pc group (P = .034). CONCLUSION. The specimens recemented with Panavia F2.0 provided higher bond strength than RelyX Ultimate cement. Moreover, a tungsten carbide bur was a more efficient method in removing the residual resin cement and increased the bond strength of Panavia F2.0 cement after recementation.

Metal bracket과 ceramic bracket의 전단 결합 강도와 debonding 상태에 관한 연구 (A STUDY OF THE SHEAR BOND STRENGTH OF METAL BRACKETS AND CERAMIC BRACKETS AND THE CONDITION AFTER DEBONDING)

  • 윤정진;유영규
    • 대한치과교정학회지
    • /
    • 제22권2호
    • /
    • pp.327-343
    • /
    • 1992
  • Metal brackets and ceramic brackets were bonded to natural teeth, porcelain crowns and gold crowns After stored in artificial saliva solution for 72 hours at $37^{\circ}C$, the shear bond strengths were measured by Instron and compared with them, the bonding sites and bracket bases were examined by scanning electron microscope and light optical stereomicroscope. The results were as follows: 1. The shear bond strengths of the group which metal brackets were bonded to natural teeth and the groups which ceramic brackets were bonded to natural teeth and porcelain crowns were comparable to each other, the shear bond strength of the group which metal brackets were bonded to gold crowns was significantly low. 2. The bond failed predominantly at the bracket base/adhesive interface with the bulk of adhesive remaining on enamel in the group which metal brackets were bonded to natural teeth. 3. The bond failed consistently at the crown/adhesive interface with all of adhesive remaining on the bracket babes in the group which metal brackets were bonded to gold crowns. 4. The bond failed at the enamel or crown/adhesive interface with the bulk of adhesive remaining on the bracket bases in the groups which cramic brackets were bonded to natural teeth and porcelain crowns. 5. The shear bond strengths of the groups which ceramic brackets were bonded to porcelain crowns were not affected by etching time.

  • PDF

가철성 보철물의 금속면 처리방법이 열중합 레진과 금속간의 결합강도에 미치는 영향 (THE EFFECTS OF METAL SURFACE TREATMENTS ON THE BONE STRENGTH OF POLYMETHYL METHACRYLATE BONDED REMOVABLE PROSTHESE)

  • 엄태완;장익태
    • 대한치과보철학회지
    • /
    • 제36권2호
    • /
    • pp.336-354
    • /
    • 1998
  • Traditionally, many kinds of mechanical bonding techniques were used for bonding resins to the surface of the metal alloys. If there is a seperation between resin and metal junction by stress accumulation and temperature change of oral cavity, the cracks or crazing may occur, accompanied by failure of resin bonding to metal. This study was designed to compare the shear bond strength of the type IV gold alloy and Cr-Co alloy surfaces treated with various methods and thermocycling. Universal Instron (Model 1000) and scanning electron microscope (JEOL, Japan) was used to record the shear bond strength of 5 groups. Forty specimens were made for each group ; group 1 was treated with sandblasting only, group 2 was coated with V-primer after sandblasting, group 3 was coated with Metal primer, group 4 wase coated with MR Bond and group 5 was coated with silane. After treated with various methods, thermocycling was done for half of the each group. The surfaces of failed pattern were observed with SEM. The results were as follows : 1. Shear bond strength of the group 1 was lower than that of another groups in type IV gold alloys and bond strength of the group 1, 2 were lower than that of group 3, 4, 5 in Cr-Co alloys. 2. Shear bond strength of the gold alloy with resin was higher than that of Cr-Co alloy when specimens were coated with V-primer. 3. Shear bond strength of the Co-Cr alloys with resin was higher than that of gold alloys when specimens were coated with Metal primer. 4. The bond strength of all specimens did not decreased significantly after thermocycling. 5. Adhesive failures were found in group 1 and Cr-Co alloy in group 2, but adhesive and cohesive failures were found in another groups.

  • PDF