• Title/Summary/Keyword: Shear adhesion strength

Search Result 232, Processing Time 0.032 seconds

Evaluation on the Mechanical Performance of Low-Quality Recycled Aggregate Through Interface Enhancement Between Cement Matrix and Coarse Aggregate by Surface Modification Technology

  • Choi, Heesup;Choi, Hyeonggil;Lim, Myungkwan;Inoue, Masumi;Kitagaki, Ryoma;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.87-97
    • /
    • 2016
  • In this study, a quantitative review was performed on the mechanical performance, permeation resistance of concrete, and durability of surface-modified coarse aggregates (SMCA) produced using low-quality recycled coarse aggregates, the surface of which was modified using a fine inorganic powder. The shear bond strength was first measured experimentally and the interface between the SMCA and the cement matrix was observed with field-emission scanning electron microscopy. The results showed that a reinforcement of the interfacial transition zone (ITZ), a weak part of the concrete, by coating the surface of the original coarse aggregate with surface-modification material, can help suppress the occurrence of microcracks and improve the mechanical performance of the aggregate. Also, the use of low-quality recycled coarse aggregates, the surfaces of which were modified using inorganic materials, resulted in improved strength, permeability, and durability of concrete. These results are thought to be due to the enhanced adhesion between the recycled coarse aggregates and the cement matrix, which resulted from the improved ITZ in the interface between a coarse aggregate and the cement matrix.

Mechanical Behavior of Weldbond Joint of 1.2GPa Grade Ultra High Strength TRIP Steel for Car Body Applications (차체용 1.2GPa급 초고장력 TRIP강의 Weldbond 접합부의 기계적 거동)

  • Lee, Jong-Dae;Lee, So-Jeong;Bang, Jung-Hwan;Kim, Dong-Cheol;Kang, Mun-Jin;Kim, Mok-Soon;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.44-49
    • /
    • 2014
  • The effect of weldbond hybrid joining process on the mechanical behavior of single lap and L-tensile joints was investigated for the newly developed 1.2GPa grade ultra high strength TRIP(transformation induced plasticity) steel. In the case of single lap shear behavior, the weldbond joint of 1.2GPa TRIP steel showed lower maximum tensile load and elongation than that of the adhesive bonding only. It was considered to be due to the reduction of real adhesion area, which was caused by the degradation of adhesive near the spot weld, and the brittle fracture behavior of the spot weld joint. In the case of L-tensile behavior, however, the maximum tensile load of the weldbond joint of 1.2GPa TRIP steel was dramatically increased and the fracture mode was change to the base metal fracture which is desirable for the spot weld joint. These synergic effect of the weldbond hybrid joining process in 1.2GPa TRIP steel was considered to be due to the stress dissipation around the spot weld joint by the presence of adhesive which resulted in the change of crack propagation path.

Shear Performance Evaluation of Composite Thermal Insulation with Quasi-Non-Combustible according to Adhesive Type (부착 유형에 따른 준불연 복합단열판 전단성능평가)

  • Choi, Ki-Sun;Oh, Keunyeong;Park, Keum-Sung;Ha, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.507-518
    • /
    • 2022
  • The purpose of this research is to obtain experimental data for developing a structural design of an external insulation system by evaluating the shear performance of a composite insulation system according to the adhesive type. The shear performance of the composite insulation system was experimentally evaluated by considering a simultaneous placement method, full and spot/edge coverage using adhesive mortar. As a result of the test, the shear strength of simultaneous placement and full coverage method was almost similar, the spot/edge coverage method was about 80% of them. Also, the simultaneous placement method is considered to be constructively advantageous when applied as an external insulation system to a high-rise building compared to using an adhesive mortar.

Interfacial and Surface Energies Evaluation of Modified Jute and Hemp Fibers/Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers (PP-MAPP) Composites using Micromechanical Technique and Contact Angle Measurement (미세역학시험법과 접촉각 측정을 통한 변형된 Jute와 Hemp섬유 강화 Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers (PP-MAPP) 복합재료의 계면 및 표면에너지 평가)

  • Park, Joung-Man;Son, Tran Quang;Jung, Jin-Gyu;Kim, Sung-Ju;Hwang, Byung-Sun
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.1-11
    • /
    • 2006
  • Interfacial evaluation of the untreated and treated Jute and Hemp fibers reinforced different matrix polypropylene-maleic anhydride polypropylene copolymer (PP-MAPP) composites were investigated by micromechanical technique and dynamic contact angle measurement. For the statistical tensile strength of Jute and Hemp fibers, bimodal Weibull distribution was fitted better than the unimodal distribution. The acid-base parameter on the interfacial shear strength (IFSS) of the natural fiber composites was characterized by calculating the work adhesion, $W_a$. The effect of alkaline, silane coupling agent on natural fibers were obtained with changing MAPP content in PP-MAPP matrices. Alkaline treated fibers made the surface energy to be higher due to removing the weak boundary layers and thus increasing surface area, whereas surface energy of silane treated Jute and Hemp fibers decreased due to blocked high energy sites. MAPP in the PP-MAPP matrix caused the surface energy to increase due to introduced acid-base sites. Microfailure modes of two natural fiber composites were observed clearly differently due to different tensile strength of natural fibers.

  • PDF

Evaluation of Physical Properties according to Mixing Ratio and the Survey of the Current Situation for Epoxy Resin used in Conservation (문화재 보존처리에 사용되는 에폭시수지의 사용현황과 배합비율에 따른 물성 변화 연구)

  • Lee, Eun Ji;Jang, Sung Yoon
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.223-234
    • /
    • 2016
  • Two-component epoxy resin is widely used in the cultural heritage restoration field. However according to mixing ratio of resin and hardener, curing property, mechanical strength and chemical structure differ which have possibility to effect the stability of cultural heritage. Result of questionnaire survey shows hands-on workers in the conservation field tend to mix the epoxy resin with his or her eye measurement when the using amount is small or mix additional hardener to shorten the pot life of epoxy resin. This research aims to analyze the curing property, mechanical strength and chemical structure of rapid curing type epoxy resin and medium curing type one depending on relative ratio of 0.25~4 of hardener to resin. When the amount of hardener was 0.5~2 times more than the resin, exothermic heat and curing speed were both increased. In case of included hardener to resin was lower than official ratio, mechanical strength (tensile shear strength, tensile strength and compressive strength) became higher along with active cross-linking bonding of the epoxy resin. Medium curing type epoxy relatively had lower exothermic heat and slower reaction during curing process. It was observed to be put to definite point of mechanical strength under lower content of hardener than official ratio. While, hardener ratio more than twice the resin slowed down the curing greatly and lowered the adhesion strength also. In conclusion, under the lower mixing rate of hardener than official ratio would show relatively fast reaction with similar mechanical strength. Over the official ratio on the other hand, material property drops rapidly. Accordingly, mixing ratio of epoxy resin is expected to be influential to the stability of cultural heritage.

Experimental Study on Adfreeze Bond Strength Between Frozen Sand and Aluminium with Varying Freezing Temperature and Vertical Confining Pressure (동결온도와 수직구속응력 변화에 따른 모래와 알루미늄 재료의 접촉면에서 작용하는 동착강도 실험 연구)

  • Ko, Sung-Gyu;Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.67-76
    • /
    • 2011
  • Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. Adfreeze bond strength is considered to be the most important design parameter for foundations in cold region. Many studies in last 50 years have been conducted to analyze characteristics of adfreeze bond strength. However, most studies have been performed under constant temperature and normal stress conditions in order to analyze affecting factors like soil type, pile material, loading speed, etc. In this study, both freezing temperature and normal stress acting on pile surface were considered to be primary factors affecting adfreeze bond strength, while other factors such as soil type, pile material and loading speed were predefined. Direct shear box was used to measure adfreeze bond strength between Joomoonjin sand and aluminium because it is easy to work for various roughness. Test was performed with temperatures of > $0^{\circ}C$, $-1^{\circ}C$, $-2^{\circ}C$, $-5^{\circ}C$, and $-10^{\circ}C$ and vertical confining pressures of 1atm, 2atm, and 3atm. Based on the test results, the effects of temperature and vertical stress on adfreeze bond strength were analyzed. The test results showed that adfreeze bond strength increases with decreased temperature and increased vertical stress. It was also noted that two types of distinct sections exist, owing to the rate of increase of adfreeze bond strength along the change of freezing temperature: 1)rapidly increasing section and 2)gradually decreasing section. In addition, the results showed that a main factor affecting adfreeze bond strength switches from friction angle to adhesion as freezing temperature decreases.

Strength Development Characteristics of Clay Stabilized with Electric Furnace Steel Slag (전기로 제강슬래그로 안정화된 연약점토의 강도 발현 특성)

  • Hyeongjoo Kim;Taegew Ham;Taewoong Park;Taeeon Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.29-37
    • /
    • 2024
  • This study aimed to investigate the changes in chemical components that occur when weak clay is mixed with steel slag modified with calcium oxide, and to understand the expression characteristics of compressive strength according to hydrophilicity and curing time. XRF testing, SEM imaging, vane shear strength and uniaxial compressive strength testing were conducted. Calcium (Ca) released from the steel slag increases the Ca content in clay by increasing the number of crystal particles and forming a coating layer known as calcium silicate hydrate (CaO-SiO2-H2O) through chemical reactions with SiO2 and Al2O3 components. The weak clay stabilized with steel slag is classified into an initial inactive zone where strength relatively does not increase and an activation zone where strength increases over curing time. The vane shear strength of the initial inactive area was found to be 4.4 to 18.4 kN/m2 in the state of the weight mixing ratio Rss 30% (steel slag 30% + clay 70%). In the case of the active area, the maximum uniaxial compressive strength increased to 431.8 kN/m2 after 480 hours of curing time, which increased due to the apparent adhesion strength of clay through pozzolanic reaction. Therefore, considering the strength expression characteristics of stabilized mixed clay based on the mixing ratio (Rss) during the recycling of steel slag can enhance its practicality in civil engineering sites.

Synthesis of Renewable Resource-derived Furan-based Epoxy Compounds and Their Adhesive Property (재생자원 유래 퓨란계 에폭시 화합물의 합성 및 접착 특성)

  • Lee, Jae-Soung;Lee, Sang-Hyeup;Jeong, Jaewon;Kim, Baekjin;Cho, Jin Ku;Kim, Hyun Joong
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.41-49
    • /
    • 2010
  • Furan-containing epoxide monomers (8, 9) were designed and synthesized as carbon-neutral, environment-friendly adhesion material. Bicyclic skeleton were constructed using the Diels-Alder reaction of furan and methyl acrylate, both readily accessible starting material from a biomass via bio-refinery process. After reduction of ester functionality, resulting hydroxyl moieties were coupled to epichlorohydrin to provide the epoxy-functionalized furanic monomers (8, 9). The structure of new furanic monomers was confirmed by $^1H$ and $^{13}C$ NMR spectroscopy. As UV-curable monomers, basic properties such as UV curing time and the extent of UV curing were evaluated by photo DSC. Photo-curing shrinkages were measured by linear variable differential transformer transducer (LVDT) and the effect of molecular structure on shrinkage was considered. In addition, new synthetic compounds showed the shear strength over 3 MPa when they were photo-cured between polycarbonate plates, which indicates these compounds are feasible to use as photo-curable adhesive materials.

Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating (건식 접착 구조물의 금속 코팅 두께에 따른 접착강도 변화)

  • Kim, Gyu Hye;Kwon, Da Som;Kim, Mi Jung;Kim, Su Hee;Yoon, Ji Won;An, Tea Chang;Hwang, Hui Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.673-677
    • /
    • 2016
  • Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively.

Study on the Compositional Construction of Epoxy Based Powder Paint (환경친화형 에폭시계 분체도료의 조성구축 연구)

  • Lim, Hong-Joon;Chung, Kyung-Ho
    • Clean Technology
    • /
    • v.12 no.1
    • /
    • pp.27-35
    • /
    • 2006
  • Main compositions of powder paint based on thermoset type epoxy resin consist of epoxy resin for powder coating, curing agent, filler and pigment. The curing system used in this study was based on diglycidyl ether of bisphenol-A (DGEBA) and dicyan diamide (DICY). The curing behavior and rheological properties of powder coating material were investigated using DSC and rheometer, respectively. And the adhesion strength between steel and powder coating material was measured using lap shear geometry. The optimum formulation of epoxy powder paint obtained from this study was base resin of 100 phr, DICY of 6 phr, $CaCO_3$ of 20 phr, and $TiO_2$ of 10 phr.

  • PDF