• Title/Summary/Keyword: Shear Locking

Search Result 144, Processing Time 0.019 seconds

Shell Finite Element for Nonlinear Analysis of Reinforced Concrete Containment Building (철근콘크리트 격납건물의 비선형 해석을 위한 쉘 유한요소)

  • Choun Young-Sun;Lee Hong-Pyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.93-103
    • /
    • 2006
  • It is absolutely essential that safety assessment of the containment buildings during service life because containment buildings are last barrier to protect radioactive substance due to the accidents. Therefore, this study describes an enhanced degenerated shell finite element(FE) which has been developed for nonlinear FE analysis of reinforced concrete(RC) containment buildings with elasto-plastic material model. For the purpose of the material nonlinear analysis, Drucker-Prager failure criteria is adapted in compression region and material parameters which determine the shape of the failure envelop are derived from biaxial stress tests. Reissner-Mindlin(RM) assumptions are adopted to develop the degenerated shell FE so that transverse shear deformation effects is considered. However, it is found that there are serious defects such as locking phenomena in RM degenerated shell FE since the stiffness matrix has been overestimated in some situations. Therefore, shell formulation is provided in this paper with emphasis on the terms related to the stiffness matrix based on assumed strain method. Finally, the performance of the present shell element to analysis RC containment buildings is tested and demonstrated with several numerical examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

Simulation of Woody Leaf Netted Venation Based on Optimization Technique (최적화기법에 의한 나뭇잎 그물맥 시뮬레이션)

  • Chen, Lei;Li, Weizheng;Jang, Gang Won;Baek, Tae Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.323-329
    • /
    • 2013
  • This study attempts to simulate the structure of a woody leaf netted venation system by using topology optimization techniques. Based on finite element method (FEM) analysis of an incompressible fluid, a topology optimal design is applied to those woody leaf netted venation models. To solve the transverse shear locking problem of a thin plate caused by the Mindlin-Reissner plate model where a leaf netted venation is assumed to be a thin plate, a P1-nonconforming element and selective reduced integration are employed. Topology optimal design is applied to multiple physical domains. Combined with the Darcy-Stokes flow problems and extended to the optimal design of fluid channels, the multiple physical models of the flow system are analyzed and venation patterns of leafs are simulated. The calculated optimal shapes are compared with the natural shapes of woody leaf venation patterns. This interdisciplinary approach may improve our understanding of the leaf venation system.

Linear Static and Free Vibration Analysis of Laminated Composite Plates and Shells using a 9-node Shell Element with Strain Interpolation (변형률 보간 9절점 쉘 요소를 이용한 적층복합판과 쉘의 선형 정적 해석 및 자유진동 해석)

  • 최삼열;한성천
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.279-293
    • /
    • 2004
  • The analysis of linear static and free vibration problems of isotropic and laminated composite plates and shells is performed by the improved 9-node shell element with the new strain displacement relationship. In that relationship, the effect of new additional terms between the bending strain and displacement has been investigated in the warping problem. Natural co ordinate based strains, stresses and constitutive equations are used. The assumed natural strain method is used to alleviate both membrane and shear locking behavior from the element. The Lanczos method is employed in the calculation of the eigenvalues of laminated composite structures and the Gauss integration rule is adopted to evaluate the mass matrix. The numerical examples are compared with the analytical solutions to validate the current formulation and the results presented could be useful for the understanding of the behaviour of laminates under free vibration conditions.

Ultimate Strength Analysis of Stiffened Shell Structures Considering Effects of Residual Stresses (잔류응력을 고려한 보강된 쉘 구조의 극한강도 해석)

  • 김문영;최명수;장승필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.197-208
    • /
    • 2000
  • Choi et al./sup 1)/ presented the total Lagrangian formulation based upon the degenerated shell element. Geometrically correct formulation is developed by updating the direction of normal vectors and taking into account the second order rotation terms in the incremental displacement field. Assumed strain concept is adopted in order to overcome the shear locking phenomena and to eliminate the spurious zero energy mode. In this paper, for the ultimate strength analysis of stiffened shell structures considering effects of residual stresses, the return mapping algorithm based on the consistent elasto-plastic tangent modulus is applied to anisotropic shell structures. In addition, the load/displacement incremental scheme is adopted for non-linear F.E. analysis. Based on such methodology, the computer program is developed and numerical examples to demonstrate the accuracy and the effectiveness of the proposed shell element are presented and compared with the results in literatures.

  • PDF