• 제목/요약/키워드: Shear Load

검색결과 2,659건 처리시간 0.032초

부분합성보를 이용한 대직경 스터드의 구조거동 평가 (Evaluation of Structural Behavior of Large Studs Using Partial Composite Beams)

  • 심창수;이필구;하태열
    • 한국강구조학회 논문집
    • /
    • 제16권4호통권71호
    • /
    • pp.425-432
    • /
    • 2004
  • 강합성교량 상부 구조의 단면 단순화 경향과 더불어 프리캐스트 교량과 같이 전단연결재를 위한 전단포켓의 등간격 배치를 필요로 하는 전단연결부의 설계를 위해서 대직경 스터드가 제안되었다. 25mm 이상의 직경을 가진 스터드 전단연결재에 대한 push-out 실험 결과를 바탕으로 합성보에서의 거동을 평가하기 위하여 40% 합성정도를 가진 부분합성보를 제작하여 정적실험을 수행하였다. 전단연결재의 직경과 배치를 변수로 설계된 부분합성보의 극한 강도 및 수평전단력의 재분배를 평가하고 전단지간내의 스터드들의 그룹파괴를 확인하였다. 전단연결부의 강도가 부분합성보의 강도를 지배하기 때문에 이로부터 전단연결재의 전단강도를 평가하였는데 push-out 실험결과에 비해서 상당히 높은 수준의 강도 증가를 보여주었다. 하중-상대변위 곡선으로부터 대직경 스터드의 합성보에서의 충분한 연성과 하중재분배 능력을 확인하였다. 대직경 스터드를 적용하여 등간격 배치를 할 경우에 정적 거동에는 문제가 없는 것으로 나타났다.

SC구조 평판의 면내전단내력 평가 (Evaluation of Steel Plate Reinforced Concrete Panels under In-plane Shear)

  • 이명재;이현욱;진성찬
    • 한국강구조학회 논문집
    • /
    • 제20권4호
    • /
    • pp.571-581
    • /
    • 2008
  • 최근 공기단축, 인건비절감 및 시공성 향상을 위한 간편한 시공법으로 그 구조적 성능이 우수한 SC구조시스템이 제안되었다. 이 연구에서는 SC구조 기술의 전반적인 연구의 일환으로 기본적인 SC구조 면내 전단력에 대한 거동특성을 파악함과 동시에 평판에 순수면내전단력을 가력하는 방법에 대해 타당성 검토를 병행한다. 특히 SC구조의 거동특성 중 순전단응력상태 및 축력과 전단응력이 동시에 작용하는 상황에서 면내전단에 대한 내력과 변형 등 기본적 역학특성 및 구조적 성능을 파악하고 평판 면내전단가력 방법을 제안하는 것이다. SC구조 평판전단내력실험을 통해 강재와 콘크리트의 일체 거동을 통한 평판의 내력 상승 및 축력의 유무에 따른 내력 상승을 확인하였으며, 전단력에 의한 평판의 파괴 양상을 파악하였다. 또한 평판에 순수 전단력만을 가력하기 위한 4힌지 프레임에 의한 평판전단내력 실험방법의 가능성 또한 확인하였다.

전단보강이 된 철근콘크리트보의 전단강도에 관한 실험적 연구 (An Experimental Study on the Shear Strength of R.C Beam with Web reinforcement)

  • 이근광;홍기섭;신영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.184-189
    • /
    • 1993
  • This is an experimental investigation the shear behavior of reinforced concrete with stirrup of which stress ranges 0.0㎏/㎠ to 7.0㎏/㎠. Five rectangular beams which concrete strengths are 287㎏/㎠ and 380㎏/㎠, a/d=3, and main steel ratio equal to 1.96% was tested. Those were designed to fail in shear. The shear cracking load and failure load were measured and compared with ACI's equation and Zutty's proposed equation. The results are following : ACI equation and Zutty's equation are consertive. As the concrete compressive strength increased, reserved shear strength of beams with minimum web reinforcement decreases. According to increase of web reinforcement , the rate of increases of shear strength is decreased. The failure modes of specimen with minimum web reinforcement are shear compression failure which is reached after diagonal shear cracking.

  • PDF

Stud connection in composite structures: development with concrete age

  • Chengqian Wen;Guotao Yang
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.729-741
    • /
    • 2023
  • As the most popular shear connection in composite structures, mature concrete has been widely investigated by considering mechanical properties of stud connectors (SCs) embedded. To further enhance the fabrication efficiency of composite structures and solve the contradiction between construction progress and structural performance, it is required to analyze the shear performance of stud connections of composite structures with different concrete ages. 18 typical vertical push-out tests were carried out on stud shear connectors at concrete ages of 7 days, 14 days, and 28 days. Also, the effects of concrete age, stud spacing and stud diameter on the shear capacity, connection stiffness and failure mode of the connectors were studied. A new relationship expression of load-slip for SCs with various concrete ages was proposed. The existing design code for the SCs shear strength was evaluated according to the experimental data, and a more practical prediction equation for the shear capacity of SCs with different concrete ages was established. A great agreement was observed between the experimental and theoretical results, which can provide a reference for engineering practices.

Comparison between reinforced concrete designs based on the ACI 318 and BS 8110 codes

  • Tabsh, Sami W.
    • Structural Engineering and Mechanics
    • /
    • 제48권4호
    • /
    • pp.467-477
    • /
    • 2013
  • Municipalities in the United Arab Emirates approve reinforced concrete design of building structures to follow either the ACI 318 or the BS 8110 code. Since the requirements of these codes are different from each, there is a need to compare the structural demand in the two codes. The main objective of this study is to compare the design requirements of the ACI 318 code with the BS 8110 code for the flexural, shear and axial compression limit states. The load factors and load combinations in the two codes are also compared. To do so, a large number of cross-sections with different geometries, material properties, and reinforcement ratios are analyzed following the procedures in the two codes. The relevant factored load combinations in the two codes are also investigated for a wide range of live-to-dead load ratios and for various wind-to-dead load ratios. The study showed that the differences between the design capacities in the ACI 318 and BS 8110 codes are minor for flexure, moderate for axial compression, and major for shear. Furthermore, the factored load combinations for dead load, live load and wind in the two codes yield minor-to-moderate differences, depending on the live-to-dead load ratio and intensity of wind.

전단 하중을 경험한 후설치 고전단 링앵커의 인장 강도 (Tensile Strength of Post-Installed High-Shear Ring Anchors (HRA) After Shear Loading)

  • 전상현;천성철;김재열
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.61-68
    • /
    • 2018
  • Tensile load tests were conducted on High-Shear Ring Anchors (HRAs) after shear load had been applied to the HRAs, which had been developed to reduce the number of the anchors. Test variables include the embedment length of the rod and the width of the specimens and a total of 12 specimens were tested. Test results show that the HRAs pulled out due to bond failure or steel failure occurred in case that the HRAs were installed to the members with 300mm or greater width and the embedment length of 160mm (the actual embedment of rod is 140mm) or deeper. Except 4 HRAs showing steel failure of rod, the minimum and average of test-to-prediction by ACI 318-14 ratios are 1.18 and 1.79, respectively. The tensile strength of HRAs, after shear load was applied to the HRAs, can be safely evaluated by the minimum among the concrete breakout strength and bond strength with the actual embedment length of the rod.

둥근 엠보싱 형상이 있는 슬라이더 베어링의 경사도에 따른 윤활효과 (Lubrication Effect of Slider Bearing with Round Embossed Surface According to Its Slider Slope)

  • 진도훈;윤문철
    • Tribology and Lubricants
    • /
    • 제30권5호
    • /
    • pp.284-290
    • /
    • 2014
  • The influence of round embossed surface on slider bearing characteristics and its load carrying capacity is discussed for thin film effect of embossed slider bearing. For the numerical computation of lubrication parameters such as pressure, load capacity and shear stress that are normalized and a Reynolds equation is used for the analysis of embossed slider bearing characteristics. For this purpose, the finite difference method of central difference scheme is used in this study. In a slider bearing with embossed form, several simulation parameters such as pressure, load capacity and shear stress of the bearing can be obtained according to independent parameters such as the slope of the slider bearing and number of embossing in the upper slider. Also this results can be summarized and be stored in sequential data file for latter analysis. After all, their distribution of the pressure and shear stress parameters can be displayed and be analyzed easily by using the developed program with matlab GUI technique. The independent parameters such as a number of embossing and a slope of the embossed surface slider are used for discussing simulation parameters of pressure distribution, shear stress and load carrying capacity of the round embossing. These study results reported in this paper should be applied to the other shaped slider bearing with a rectangular embossed surface or rectangular waved surface.

Experimental research on seismic behavior of steel reinforced high-strength concrete short columns

  • Zhu, Weiqing;Jia, Jinqing;Zhang, Junguang
    • Steel and Composite Structures
    • /
    • 제25권5호
    • /
    • pp.603-615
    • /
    • 2017
  • This experimental research presents the seismic performance of steel reinforced high-strength concrete (SRHC) short columns. Eleven SRHC column specimens were tested under simulated earthquake loading conditions, including six short column specimens and five normal column specimens. The parameters studied included the axial load level, stirrup details and shear span ratio. The failure modes, critical region length, energy dissipation capacity and deformation capacity, stiffness and strength degradation and shear displacement of SRHC short columns were analyzed in detail. The effects of the parameters on seismic performance were discussed. The test results showed that SRHC short columns exhibited shear-flexure failure characteristics. The critical region length of SRHC short columns could be taken as the whole column height, regardless of axial load level. In comparison to SRHC normal columns, SRHC short columns had weaker energy dissipation capacity and deformation capacity, and experienced faster stiffness degradation and strength degradation. The decrease in energy dissipation and deformation capacity due to the decreasing shear span ratio was more serious when the axial load level was higher. However, SRHC short columns confined by multiple stirrups might possess good seismic behavior with enough deformation capacity (ultimate drift ratio ${\geq}2.5%$), even though a relative large axial load ratio (= 0.38) and relative small structural steel ratio (= 3.58%) were used, and were suitable to be used in tall buildings in earthquake regions.

Comparative in-plane pushover response of a typical RC rectangular wall designed by different standards

  • Dashti, Farhad;Dhakal, Rajesh P.;Pampanin, Stefano
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.667-689
    • /
    • 2014
  • Structural walls (also known as shear walls) are one of the common lateral load resisting elements in reinforced concrete (RC) buildings in seismic regions. The performance of RC structural walls in recent earthquakes has exposed some problems with the existing design of RC structural walls. The main issues lie around the buckling of bars, out-of plane deformation of the wall (especially the zone deteriorated in compression), reinforcement getting snapped beneath a solitary thin crack etc. This study compares performance of a typical wall designed by different standards. For this purpose, a case study RC shear wall is taken from the Hotel Grand Chancellor in Christchurch which was designed according to the 1982 version of the New Zealand concrete structures standard (NZS3101:1982). The wall is redesigned in this study to comply with the detailing requirements of three standards; ACI-318-11, NZS3101:2006 and Eurocode 8 in such a way that they provide the same flexural and shear capacity. Based on section analysis and pushover analysis, nonlinear responses of the walls are compared in terms of their lateral load capacity and curvature as well as displacement ductilities, and the effect of the code limitations on nonlinear responses of the different walls are evaluated. A parametric study is also carried out to further investigate the effect of confinement length and axial load ratio on the lateral response of shear walls.

Shear strengthening of deficient concrete beams with marine grade aluminium alloy plates

  • Abu-Obeidah, Adi S.;Abdalla, Jamal A.;Hawileh, Rami A.
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.249-262
    • /
    • 2019
  • In this study, high strength aluminum alloys (AA) plates are proposed as a new construction material for strengthening reinforced concrete (RC) beams. The purpose of this investigation is to evaluate AA plate's suitability as externally bonded reinforcing (EBR) materials for retrofitting shear deficient beams. A total of twenty RC beams designed to fail in shear were strengthened with different spacing and orientations. The specimens were loaded with four-points loading till failure. The considered outcome parameters included load carrying capacity, deflection, strain in plates, and failure modes. The results of all tested beams showed an increase up to 37% in the load carrying capacity and also an increase in deflection compared to the control un-strengthened beams. This demonstrated the potential of adopting AA plates as EBR material. Finally, the shear contribution from the AA plates was predicted using the models available in the ACI440-08, TR55 and FIB14 design code for fiber reinforced polymer (FRP) plates. The predicted results were compared to experimental testing data with the ratio of the experimentally measured ultimate load to predicted load, range on the average, between 93% and 97%.