• Title/Summary/Keyword: Shear Flutter

Search Result 41, Processing Time 0.02 seconds

Analysis of Blood Flow Interacted with Leaflets in MHV in View of Fluid-Structure Interaction

  • Park, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.613-622
    • /
    • 2001
  • Interaction of blood flow and leaflet behavior in a bileaflet mechanical heart valve was investigated using computational analysis. Blood flows of a Newtonian fluid and a non-Newtonian fluid with Carreau model were modeled as pulsatile, laminar, and incompressible. A finite volume computational fluid dynamics code and a finite element structure dynamics code were used concurrently to solve the flow and structure equations, respectively, where the two equations were strongly coupled. Physiologic ventricular and aortic pressure waveforms were used as flow boundary conditions. Flow fields, leaflet behaviors, and shear stresses with time were obtained for Newtonian and non-Newtonian fluid cases. At the fully opened phase three jets through the leaflets were found and large vortices were present in the sinus area. At the very final stage of the closing phase, the angular velocity of the leaflet was enormously large. Large shear stress was found on leaflet tips and in the orifice region between two leaflets at the final stage of closing phase. This method using fluid-structure interaction turned out to be a useful tool to analyze the different designs of existing and future bileaflet valves.

  • PDF

Effect of Boundary Conditions on the Stability Characteristics of Nanopipes (경계조건에 따른 나노파이프의 안정성 특성)

  • Choi, Jong-Woon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1057-1064
    • /
    • 2008
  • In this paper, static and oscillatory instability of nanopipes conveying fluid and modelled as a thin-walled beam is investigated. Effects of boundary conditions and non-classical transverse shear and rotary inertia are incorporated in this study. The governing equations and the three different boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Variations of critical flow velocity for different boundary conditions of carbon nanopipes are investigated and pertinent conclusion is outlined.

Stability Analysis of Nanopipes Considering Nonlocal Effect (Nonlocal 효과를 고려한 나노파이프의 안정성 해석)

  • Choi, Jongwoon;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.324-331
    • /
    • 2013
  • In this paper, static and oscillatory instability of a nanotube conveying fluid and modeled as a thin-walled beam is investigated. Analytically nonlocal effect, effects of boundary conditions, transverse shear and rotary inertia are incorporated in this study. The governing equations and boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extended Galerkin method which enables us to obtain more accurate results compared with conventional Galerkin method. Variations of critical flow velocity of carbon nanopipes with two different boundary conditions based on the analytically nonlocal theory and partially nonlocal theory are investigated and pertinent conclusions are outlined.

Nonlinear Stability Characteristics of Carbon Nanotubes (탄소나노튜브의 비선형 안정성 해석)

  • Choi, Jong-Woon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.699-709
    • /
    • 2009
  • In this paper, the nonlinear dynamics and the stability of nanopipes conveying fluid and modelled as a thin-walled beam is investigated. Effects of boundary conditions, geometric nonlinearity, non-classical transverse shear and rotary inertia are incorporated in this study. The governing equations and the three different boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Variations of critical flow velocity for different boundary conditions of carbon nanopipes are investigated and compared with linear case.

Thermal Stability Analysis of Flexible Beam Spacecraft Appendage (위성체 유연 보 구조물의 열 안정성 해석)

  • 윤일성;송오섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.399-406
    • /
    • 2001
  • Thermally induced vibration response of composite thin walled beams is investigated. The thin-walled beam model incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferentially uniform system(CUS) configuration are exploited in connection with the structural bending-torsion coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated.

  • PDF

Effects of Crack on Stability of Cantilever Pipe Conveying Fluid (유체유동 외팔 파이프의 안정성에 미치는 크랙의 영향)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Dong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1119-1126
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked cantilever pipe conveying fluid with tip mass is investigated. The pipe is modelled by the Euler-Bernoulli beam theory in which rotatory inertia and shear deformation effects are ignored. The equation of motion is derived by the energy expressions using extended Hamilton's Principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influence of the crack severity, the position of crack, the mass ratio, and a tip mass on the stability of a cantilever pipe conveying fluid are studied by the numerical method. Besides, the critical flow velocity and the stability maps of the pipe system as a function of mass ratios($\beta$) for the changing each parameter are obtained.

Effect of Boundary Conditions on the Stability Characteristics of a Nanotube with Scale Effect (Scale Effect를 고려한 경계조건에 따른 나노튜브의 안정성 해석)

  • Choi, Jong-Woon;Yun, Kyung-Jae;Kim, Sung-Kyun;Park, Sang-Yun;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.923-928
    • /
    • 2012
  • In this paper, static and oscillatory instability of a nanotube conveying fluid and modelled as a thin-walled beam is investigated. Analytically nonlocal effect, effects of boundary conditions, transverse shear and rotary inertia are incorporated in this study. The governing equations and the two different boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Variations of critical flow velocity for different boundary conditions of a nanotube with analytically nonlocal effect, partially nonlocal effect and local effect of a nanotube are investigated and pertinent conclusion is outlined.

  • PDF

Scale Effect on the Flow-Induced Vibration of Carbon Nanotubes Conveying Fluids (Scale effect를 고려한 탄소나노튜브의 유체유발진동)

  • Choi, Jong-Woon;Kim, Sung-Kyun;Park, Sang-Yun;Kim, Young-June;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.147-152
    • /
    • 2011
  • In this paper, static and oscillatory loss of stability of carbon nanotube conveying fluid and modelled as a thin-walled beam is investigated. Analytically nonlocal effect, transverse shear and rotary inertia are incorporated in this study. The governing equations and the boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Variations of critical flow velocity for analytically nonlocal effect, partially nonlocal effect and local effect of carbon nanopipes are investigated and pertinent conclusion is outlined.

  • PDF

Papers : Thermally Induced Vibration Analysis of Flexible Spacecraft Appendages (논문 : 위성체 유연 구조물의 열진동 해석)

  • Yun,Il-Seong;Song,O-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.56-64
    • /
    • 2002
  • Thermally induced vibration response of composite thin-walled beams is investigated in this paper. The flexible spacecraft appendages modeled as thin-walled beam incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constitute materials. Thermally induced vibration responds characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending lagwise bending coupling resulting from directioal properties of fiber reinforced composite materials and ply stacking sequence. A coupled thermal structure gradient is investigated.

Nonlinear higher order Reddy theory for temperature-dependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture

  • Raminnea, M.;Biglari, H.;Tahami, F. Vakili
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.153-186
    • /
    • 2016
  • This paper addresses temperature-dependent nonlinear vibration and instability of embedded functionally graded (FG) pipes conveying viscous fluid-nanoparticle mixture. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Reddy third-order shear deformation theory (RSDT) of cylindrical shells are developed using the strain-displacement relations of Donnell theory. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on energy method and Hamilton's principal, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as mode numbers, nonlinearity, fluid velocity, volume percent of nanoparticle in fluid, gradient index, elastic medium, boundary condition and temperature gradient are discussed. Numerical results indicate that with increasing the stiffness of elastic medium and decreasing volume percent of nanoparticle in fluid, the frequency and critical fluid velocity increase. The presented results indicate that the material in-homogeneity has a significant influence on the vibration and instability behaviors of the FG pipes and should therefore be considered in its optimum design. In addition, fluid velocity leads to divergence and flutter instabilities.