• Title/Summary/Keyword: Sharp-Edge

Search Result 189, Processing Time 0.026 seconds

CAE based risk prediction for sharp edge improvement (샤프엣지 개선을 위한 해석적 리스크 검토법)

  • Nam, Byeung Gun;Park, Shin Hee;Kim, Hyun Sup
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.36-42
    • /
    • 2014
  • In order to prevent the sharp edge during the side impact, a cause analysis and CAE based risk prediction were carried out in this study. It was found that sharp edge occurs mainly because of stiffness difference between the major parts and structural stress concentration. It could be improved by directly reinforcing the crack initiation region or by weakening the joints connecting the parts. The fracture criterion based on major in-plain strain was suggested and the risk prediction process for sharp edge prevention was established.

Numerical Study of Turbine Blade Surface Gas Temperature with Various RPM and Blade Edge Shape (터빈 블레이드 회전수 변화와 터빈 블레이드 엣지 형상 변화에 따른 표면 가스온도 분포 해석)

  • Lee, In-Chul;Byun, Yong-Woo;Koo, Ja-Ye;Lee, Sang-Do;Kim, Kui-Soon;Moon, In-Sang;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.49-52
    • /
    • 2008
  • The numerical analysis for gas temperature of turbine blade surface has been performed to investigate development of temperature with various blade edge shape. Two different types of the turbine which one is "Sharp" edge and the other is "Round" edge was modeled. Computations have been carried out several turbine rotational speeds in the range from 0 to 10,000 rpm for the each types of turbine edge shape. As a result, the more rotational speed of turbine increased, the more turbine blade's temperature decreased. It is also found that the surface temperature of turbine blades for sharp type edge were lower than the round type edge.

  • PDF

Sharp Edge Tool Alignment for Micro Pattern Machining (마이크로 패터닝 가공을 위한 공구 정렬에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • This paper presents a geometrical error compensation of tool alignment for sharp edge bite on B axis controlled machine. In precision micro patterning, bite alignment is crucial parameter for machined surface. To decrease bite alignment error, plus tilted bite from B axis center is touched to reference work piece(pin gauge) and checked the deviation from original position. Same process is repeated for maximum touch deviation value. From this touched position value, wheel alignment error in X axis and Z axis can be calculated on B axis center. Experimental results show that this compensation method is efficient to correct sharp edge bite alignment.

  • PDF

Investigation of Cutting Characteristics in the Sharp Edge for the Case of Cutting of a Low Carbon Steel Sheet using High-power CW Nd:YAG Laser (고출력 CW Nd:YAG 레이저를 이용한 저탄소 냉연강판 절단시 모서리부 절단 특성 분석)

  • Ahn, Dong-Gyu;Yoo, Young-Tae
    • Journal of Welding and Joining
    • /
    • v.24 no.4
    • /
    • pp.32-38
    • /
    • 2006
  • The objective of present research works is to investigate the effects of process parameters, including the power of laser, cutting speed, material thickness, and the edge angle, on the melted area in the sharp edge of the cut material fur the case of cutting of a low carbon steel sheet using high-power CW Nd:YAG laser. In order to investigate the influence of edge angle and size of loop on the melted area in the sharp edge, angular cutting tests and loop cutting tests have been carried out. From the results of angular cutting tests, the relationship between the edge angle and the melted area has been obtained. The results of the experiments have been shown that the melted area is rapidly reduced from $120^{\circ}$ of the edge angle and the melted area is nearly zero at $150^{\circ}$ of the edge angle. Through the results of loop cutting experiments, the relationship between the cutting angle on the melted area in the edge according to the size of loop have been obtained. In addition, it has been shown that a proper size of loop is nearly 3 mm as the corner angle is greater than $90^{\circ}$ and 5 mm as the comer angle is less than $90^{\circ}$. The results of above experiments will be reflected on the knowledge base to generate optimal cutting path of the laser.

Convex Sharp Edge Detection of CAD Surfaces without Topology (토폴로지 정보가 없는 CAD 곡면의 꺾인 모서리 탐색)

  • 박정환;이정근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.73-79
    • /
    • 2000
  • The part-surface of mold or stamping-dies consists of a compound surface which consists of lots of composite surfaces, and may have various types of feature shapes including convex sharp edge (CSE). Those CSE features should be considered with care in machining the surface, which necessitates extraction of CSE curves on a compound surface. This work can be done rather easily for a solid model which has a complete topology information. In case of the compound surface without topology information, however, such CSE curves must be gathered through some geometrical calculations paying much computation time. In the paper, extracting CSE curves by the construction of a CSE region-map which can reduce time, and detecting various common edge types are presented.

  • PDF

Aerodynamic Characteristics of Delta Wing According to Leading Edge Geometries (앞전 형상에 따른 삼각 날개의 공력 특성)

  • Jin, Hak-Su;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.2
    • /
    • pp.56-63
    • /
    • 2007
  • Flow visualization and aerodynamic characteristics of delta wings with two different leading edge geometries are investigated by PIV system and wind tunnel balance when the Reynolds number is about based on the freestream velocity and the root chord length. Delta wing models have 65-deg swept angle, and the leading edge shapes are divided into round- and sharp- type. The experimental results indicated that the leading-edge vortex strength and aerodynamic coefficient in the round leading edge are stronger and more, respectively than those in the sharp one. Therefore the flow interactions between vortices and the boundary layer are more desirable or more rapidly swirled in the round-type leading edge.

The Effect of Cutting Edge on the Surface Roughness In Cutting Brittle Materials (취성재료의 가공시 절삭날이 표면거칠기에 미치는 영향)

  • Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • A clear understanding of the surface formation mechanism due to cutting is very important to help produce a good quality surface. Much of the roughness along the length of a bar being cut in a lathe can be explained in terms of macroscopic tool shape and feed rate. However, the roughness along the direction of cutting requires a different explanation. The formation of surface roughness is a problem in flow and fracture of materials in the vicinity of the tool edge. On a microscopic scale the cutting edge is rounded because it is impossible to grind a perfectly sharp cutting edge. Even if a perfectly sharp cutting edge were obtained it would soon become dull as a result of rapid breakdown and wear of the cutting edge. A research project is proposed in which in the main object is to model the surface formation mechanism due to cutting. The tool was assumed to be dull, that is, its edge has a finite radius. In order to study the effect of the radius of cutting edge on the surface formation, tools having different cutting edges were used. For orthogonal cutting experiment, cast iron and glass were chosen as brittle materials. Plowing forces acting in the cutting edge were estimated and its effect on the surface roughness was studied by observing the machined surface using optical microscope.

  • PDF

The effect of front edge on efficiency for point and volume source geometries in p-type HPGe detectors

  • Esra Uyar ;Mustafa Hicabi Bolukdemir
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4220-4225
    • /
    • 2022
  • Monte Carlo (MC) simulations are increasingly being used as an alternative or supplement to the gamma spectrometric method in determining the full energy peak efficiency (FEPE) necessary for radionuclide identification and quantification. The MC method is more advantageous than the experimental method in terms of both cost and time. Experimental calibration with standard sources is difficult, especially for specimens with unusually shaped geometries. However, with MC, efficiency values can be obtained by modeling the geometry as desired without using any calibration source. Modeling the detector with the correct parameters is critical in the MC method. These parameters given to the user by the manufacturer are especially the dimensions of the crystal and its front edge, the thickness of the dead layer, dimensions, and materials of the detector components. This study aimed to investigate the effect of the front edge geometry of the detector crystal on efficiency, so the effect of rounded and sharp modeled front edges on the FEPE was investigated for <300 keV with three different HPGe detectors in point and volume source geometries using PHITS MC code. All results showed that the crystal should be modeled as a rounded edge, especially for gamma-ray energies below 100 keV.

Efficient Image Deblurring using Edge Prediction (에지 예측을 기반으로 한 효율적인 영상 디블러링 -선명한 에지 예측을 기반으로 한 장의 영상으로부터의 모션 블러 제거-)

  • Cho, Sung-Hyun;Lee, Seung-Yong
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.27-33
    • /
    • 2009
  • We propose an efficient method for single image motion deblurring using edge prediction. Previous methods for motion deblurring from a single image have been based on total variation or natural image statistics. In contrast, our method predicts sharp edges by applying bilateral and shock filters and manipulating image gradients directly, and estimates motion blur using the predicted sharp edges. Sharp edge prediction makes our method possible to deblur efficiently with less computation. Results show that our method can effectively and efficiently restore images degraded by large complex motion blur.

  • PDF

제공전투기의 초음속 순항 성능 향상을 위한 가변 앞전형상 에어포일의 개념설계 제안

  • Yun, Yeong-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.647-652
    • /
    • 2016
  • To reduce drag force at supersonic speeds, sharp leading edge is hugely efficient. It is, however, incompatible with leading edge shape to have fine aerodynamic characteristics at subsonic and transonic speeds. It is critical to reduce drag force for enhanced cruise performance and higher efficiency. An air superiority fighter, however, required to have high maneuverability for survivability, and sharp leading edge is not proper. Consequently, variable leading edge is demanded to reduce drag force significantly at supersonic speeds for cruise performance. Leading edge altering system is constructed with rigid material to improve possibility of realization, and minimized movement of its components in altering for reduce effects on flight. It is compared with bi-convex airfoil and NACA 65-006 airfoil, which have comparable maximum thickness. At Mach number 1.7 and zero angle of attack, supersonic mode of designed airfoil indicates approximately 17% higher drag coefficient than the bi-convex airfoil indicates, it is, however, 23% lower than the NACA 65-006 indicates. Also, subsonic mode of the designed airfoil shows fine aerodynamic characteristics in comparison with NACA 65-006 airfoil in subsonic and transonic speed range. In this regard, design of the airfoil achieved the object of this study satisfactorily.

  • PDF