• 제목/요약/키워드: Sharing current control

검색결과 189건 처리시간 0.033초

Interleaved 부스트 컨버터의 새로운 전류 분배 기법 (A Novel Current Sharing Technique for Interleaved Boost Converter)

  • 민병선;박남주;현동석
    • 전력전자학회논문지
    • /
    • 제12권2호
    • /
    • pp.165-173
    • /
    • 2007
  • 본 논문에서는 캐리어 상승 기울기 보상을 통한 교호 승압 컨버터(Interleaved Boost Converter: IBC)의 새로운 전류 분배 기법을 제안한다. 교호 승압 컨버터는 저 전압 입력을 상승시키면서 대전류 출력 운용이 가능한 DC/DC 컨버터로서 단일 컨버터에 비해 다양한 장점을 갖고 있으나, 병렬로 연결된 모듈 간 전류의 분배가 여전히 주요한 문제로 남아있다. 제안한 기법은 이러한 문제를 해결하기 위해 마스터-슬레이브 전류 분배 기법에 근거하여 병렬로 연결된 모듈 간 전력과 상전류를 균등하게 제어할 수 있다. 기존의 균등 전류 분배 기법과 달리 슬레이브 모듈에 사용된 스위칭 소자의 전류 정격이 마스터 모듈 대비 상대적으로 낮은 스위칭 소자가 사용되었다 하더라도 제안한 기법을 통해 최적의 전류 분배를 이룰 수 있다. 제안한 기법의 유효성을 보이기 위해 시뮬레이션과 실험을 통해 이를 검증하였다.

Novel Single-inductor Multistring-independent Dimming LED Driver with Switched-capacitor Control Technique

  • Liang, Guozhuang;Tian, Hanlei
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.1-10
    • /
    • 2019
  • Current imbalance is the main factor affecting the lifespan of light-emitting diode (LED) lighting systems and is generally solved by active or passive approaches. Given many new lighting applications, independent control is particularly important in achieving different levels of luminance. Existing passive and active approaches have their own limitations in current sharing and independent control, which bring new challenges to the design of LED drivers. In this work, a multichannel resonant converter based on switched-capacitor control (SCC) is proposed for solving this challenge. In the resonant network of the upper and lower half-bridges, SCC is used instead of fixed capacitance. Then, the individual current of the LED array is obtained through regulation of the effective capacitance of the SCC under a fixed switching frequency. In this manner, the complexity of the control unit of the circuit and the precision of the multichannel outputs are further improved. Finally, the superior performance of the proposed LED driver is verified by simulations and a 4-channel experimental prototype with a rated output power of 20 W.

Modeling and Analysis of an Avionic Battery Discharge Regulator

  • Chen, Qian;Yu, Haihong;Huang, Xiaoming;Lu, Yi;Qiu, Peng;Tong, Kai;Xuan, Jiazhuo;Xu, Feng;Xuan, Xiaohua;Huang, Weibo;Zhang, Yajing
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1218-1225
    • /
    • 2016
  • The avionic battery discharge regulator (BDR) plays an important role in a power-conditioning unit. With its merits of high efficiency, stable transfer function, and continuous input and output currents, the non-isolated Weinberg converter (NIWC) is suitable for avionic BDR. An improved peak current control strategy is proposed to achieve high current-sharing accuracy. Current and voltage regulators are designed based on a small signal model of a three-module NIWC system. The system with the designed regulators operates stably under any condition and achieves excellent transient response and current-sharing accuracy.

Voltage and Frequency Droop Control for Accurate Power Sharing of Parallel DG Inverters in Low Voltage Microgrid

  • Nguyen, Tien Hai;Kim, Kyeong-Hwa
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.95-96
    • /
    • 2016
  • This paper presents a voltage and frequency droop control for accurate power sharing of parallel distributed generation (DG) inverters in low voltage microgrid. In practice, line impedances between inverters and the point of common coupling of a microgrid are not always equal. This inequality in line impedances often results in reactive power sharing mismatch among inverters. To address this problem, intensive researches have been conducting. Although these methods can solve the unbalanced reactive power sharing, there are still problems remain unresolved, such as complicated structure or circulating current. To overcome such problems, a new droop control scheme is proposed, which not only guarantees accurate reactive power sharing but also has simple structure so that it can be easily implemented in existing systems without any hardware modification. The simulation is performed using Matlab/Simulinks to validate the proposed scheme.

  • PDF

A NEW CONTROL METHOD FOR CURRENT SHARING IN THE 12-PULSE PHASE-CONTROLLED RECTIFIER

  • Min, Byoung-Gwon;Baek, Byung-San;Won, Chung-Yuen
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.581-585
    • /
    • 1998
  • This paper presents the new current sharing control method of a 12-pulse phase-controlled rectifier(PCR) for a UPS. The control circuit of the 12-Pulse PCR with a parallel operating rectifier system is proposed to balance input currents and to reduce the harmonics of input current. The PCR is used widely in the industrial world, since its cost is much lower than that of the PWM converter and the composition of control circuits is simple. This system is developed and tested for a 3-phase 400KVA UPS system and the experimental results in this application are included.

  • PDF

토크분배함수를 이용한 SRM의 적접토크제어기법 (Direct Torque Control Scheme of Switched Reluctance Motor using Novel Torque Sharing Function)

  • 안진우;이동희;김태형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.138-140
    • /
    • 2007
  • A novel non-linear logical torque sharing function (TSF) is presented. To improve efficiency and to reduce torque ripple in commutation region, only a phase torque under commutation is regulated to produce a uniform torque. And the torque developed by the other phase remains with the previous state under a current limit of the motor and drive. If the minimum change of a phase torque reference can not satisfy the total reference torque, two-phase changing mode is used. Since a phase torque is constant and the other phase torque is changed at each rotor position, total torque error can be reduced within a phase torque error limit. And the total torque error is dependent on the change of phase torque. To consider non-linear torque characteristics and to suppress a tail current at the end of commutation region, the incoming phase current is changed to torque increasing direction, but the outgoing phase current is changed to torque decreasing direction. So, the torque sharing of the outgoing phase and incoming phase can be smoothly changed with a minimum current cross over. The proposed control scheme is verified by some computer simulations and experimental results.

  • PDF

충전기 겸용 스위치드 릴럭턴스 전동기의 제로토크제어 (Zero Torque Control of Switched Reluctance Motor for Integral Charging)

  • 라쉬디;나마찌;세헤이안;이동희;안진우
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.328-338
    • /
    • 2017
  • In this paper, a zero torque control scheme adopting current sharing function (CSF) used in integrated Switched Reluctance Motor (SRM) drive with DC battery charger is proposed. The proposed control scheme is able to achieve the keeping position (KP), zero torque (ZT) and power factor correction (PFC) at the same time with a simple novel current sharing function algorithm. The proposed CSF makes the proper reference for each phase windings of SRM to satisfy the total charging current of the battery with zero torque output to hold still position with power factor correction, and the copper loss minimization during of battery charging is also achieved during this process. Based on these, CSFs can be used without any recalculation of the optimal current at every sampling time. In this proposed integrated battery charger system, the cost effective, volume and weight reduction and power enlargement is realized by function multiplexing of the motor winding and asymmetric SR converter. By using the phase winding as large inductors for charging process, and taking the asymmetric SR converter as an interleaved converter with boost mode operation, the EV can be charged effectively and successfully with minimum integral system. In this integral system, there is a position sliding mode controller used to overcome any uncertainty such as mutual inductance or DC offset current sensor. Power factor correction and voltage adaption are obtained with three-phase buck type converter (or current source rectifier) that is cascaded with conventional SRM, one for wide input and output voltage range. The practicability is validated by the simulation and experimental results by using a laboratory 3-hp SRM setup based on TI TMS320F28335 platform.

A Novel Topology Structure and Control Method of High-Voltage Converter for High-Input-Voltage Applications

  • Song, Chun-Wei;Zhao, Rong-Xiang;Zhang, Hao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권2호
    • /
    • pp.79-84
    • /
    • 2012
  • In this paper, a three-phase high-voltage converter (HVC), in which the main structure of each phase is composed of a cascaded PWM rectifier (CPR) and cascaded inverter (CI), is studied. A high-voltage grid is the input of the HVC. In order to ensure proper operation of the HVC, the control method should achieve output voltage sharing (OVS) among the rectifiers in the CPR, OVS among the inverters in the CI, and high power factor. Master-slave direct-current control (MDCC) is used to control the CPR. The ability of the control system to prevent interference is strong when using MDCC. The CI is controlled by three-loop control, which is composed of an outer common-output-voltage loop, inner current loops and voltage sharing loops. Simulation results show low total harmonic distortion (THD) in the HVC input currents and good OVS in both the CPR and CI.

Modeling and Control Method for High-power Electromagnetic Transmitter Power Supplies

  • Yu, Fei;Zhang, Yi-Ming
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.679-691
    • /
    • 2013
  • High-power electromagnetic transmitter power supplies are an important part of deep geophysical exploration equipment. This is especially true in complex environments, where the ability to produce a highly accurate and stable output and safety through redundancy have become the key issues in the design of high-power electromagnetic transmitter power supplies. To solve these issues, a high-frequency switching power cascade based emission power supply is designed. By combining the circuit averaged model and the equivalent controlled source method, a modular mathematical model is established with the on-state loss and transformer induction loss being taken into account. A triple-loop control including an inner current loop, an outer voltage loop and a load current forward feedback, and a digitalized voltage/current sharing control method are proposed for the realization of the rapid, stable and highly accurate output of the system. By using a new algorithm referred to as GAPSO, which integrates a genetic algorithm and a particle swarm algorithm, the parameters of the controller are tuned. A multi-module cascade helps to achieve system redundancy. A simulation analysis of the open-loop system proves the accuracy of the established system and provides a better reflection of the characteristics of the power supply. A parameter tuning simulation proves the effectiveness of the GAPSO algorithm. A closed-loop simulation of the system and field geological exploration experiments demonstrate the effectiveness of the control method. This ensures both the system's excellent stability and the output's accuracy. It also ensures the accuracy of the established mathematical model as well as its ability to meet the requirements of practical field deep exploration.

Improved Droop Method for Converter Parallel Operation in Large-Screen LCD TV Applications

  • Kim, Jung-Won;Jang, Paul
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.22-29
    • /
    • 2014
  • Current sharing between modules in a converter parallel operation is very important for the reliability of the system. This paper proposes an improved droop method that can effectively improve current sharing accuracy. The proposed method adaptively adjusts the output voltage set-point of each module according to the current set-points. Unlike conventional droop control, modules share a signal line to communicate with each other. Nevertheless, since signals are simple and in digital form, the complexity of the circuitry is much less and noise immunity is much better than those of conventional methods utilizing communication. The operation principle and design procedure of the proposed method are described in detail. Results of the experiment on two boost converters operating in parallel under the specification of a TFT LCD TV panel power supply verify the validity of the proposed scheme.