• Title/Summary/Keyword: Shaped field

Search Result 698, Processing Time 0.03 seconds

TheMagneticFieldDistributionAnalysisandOpticalCharacteristicsfortheRing-ShapedElectrodelessFluorescentLamp. (환형무전극형광램프의자계분포해석과광학적특성에관한연구)

  • Jo Ju-Ung;Lee Jong-Chan;Choi Yong-Sung;Kim Yong-Kap;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.6
    • /
    • pp.255-261
    • /
    • 2005
  • Recently, the RF inductive discharge or inductively coupled plasma continues to attract growing attention as an effective plasma source in many industrial applications, the best known of which are plasma processing and lighting technology. To the point of lighting sources, the ring-shaped electrodeless fluorescent lamps utilizing an inductively coupled plasma have been objects of interest and research during the last decades, mainly because of their potential for extremely long life, high lamp efficacies, rapid power switching response. In this paper, maxwell 3D finite element analysis program (Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250 kHz and some specific conditions. The electromagnetic field in the ferrite core was shown to be high and symmetric. An LS-100 luminance meter and a Darsa-2000 spectrum analyzer were used in the experiment. According to data on the lamp tested using high magnetic field ferrite, the optical and thermal wave fields were shown to be high around the ring-shaped electrodeless fluorescent lamp. The optical or light field was high at the center of the bulb rather than around the ferrite core. The light conditions of the bulb were assumed to be complex, depending on the condition of the filler gas, the volume of the bulb, and the frequency of the inverter. Our results have shown coupling between the gas plasma and the field of the light emitted to be nonlinear.

Automatic Surface Generation for Extrusion Die of Arbitrarily Shaped Section using B-spline Surfaces and Scalar Field Theory (B-스플라인 곡면과 스칼라장 이론을 이용한 임의의 형상의 압출금형 곡면의 자동생성)

  • 임종훈;김광혁;유동진;양동열
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 2004
  • A new approach for the design of extrusion die surface of arbitrarily shaped section is presented. In order to generate the extrusion die surface. an automatic surface construction method based on B-spline surface and scalar field theory is proposed. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u- and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections. To verify the validity and effectiveness of the proposed method, automatic surface generation is carried out for extrusion dies of arbitrarily shaped sections.

Dual Gate L-Shaped Field-Effect-Transistor for Steep Subthreshold Slope

  • Najam, Faraz;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.171-172
    • /
    • 2018
  • Dual gate L-shaped tunnel field-effect-transistor (DG-LTFET) is presented in this study. DG-LTFET achieves near vertical subthreshold slope (SS) and its ON current is also found to be higher then both conventional TFET and LTFET. This device could serve as a potential replacement for conventional complimentary metal-oxide-semiconductor (CMOS) technology.

  • PDF

The Development of Cylinder Shaped Air-breathing PEMFC (원통형 자연대류 방식 PEMFC 개발)

  • Lee, Kang-In;Lee, Se-Won;Park, Min-Soo;Chu, Chong-Nam
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.2
    • /
    • pp.125-132
    • /
    • 2009
  • Cylinder shaped air-breathing PEMFC has been developed to have small volume, low contact resistance and better air accessibility to the open cathode. This cylinder shaped design consists of an anode cylinder with helical flow channel and a cathode current collector with slits. The pressure distribution measurement according to the shapes was performed. The test result indicated that cylinder shaped fuel cell has better pressure distribution compared with the planar shaped fuel cell. The better pressure distribution was connected to the higher performance. The maximum power density of cylinder shaped fuel cell was about 20% higher than the planar shaped fuel cell. The maximum power density of the developed cylinder shaped air-breathing PEMFC with dry hydrogen was $220\;mW/cm^2$ and with humidified hydrogen was $293\;mW/cm^2$.

X-shaped Conjugated Organic Materials for High-mobility Thin Film Transistor

  • Choi, Dong-Hoon;Park, Chan-Eon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.310-311
    • /
    • 2009
  • New X-shaped crystalline molecules have been synthesized through various coupling reactions and their electronic properties were investigated. They exhibit good solubility in common organic solvents and good self-film forming properties. They are intrinsically crystalline as they exhibit well-defined X-ray diffraction patterns from uniform and preferred orientations of molecules. They also exhibited high field effect mobilities in thin film transistor (TFT) and good device performances.

  • PDF

Local stress field for torsion of a penny-shaped crack in a transversely isotropic functionally graded strip

  • Feng, W.J.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.759-768
    • /
    • 2004
  • The torsion of a penny-shaped crack in a transversely isotropic strip is investigated in this paper. The shear moduli are functionally graded in such a way that the mathematics is tractable. Hankel transform is used to reduce the problem to solving a Fredholm integral equation. The crack tip stress field is obtained by taking the asymptotic behavior of Bessel function into account. The effects of material property parameters and geometry criterion on the stress intensity factor are investigated. Numerical results show that increasing the shear moduli's gradient and/or increasing the shear modulus in a direction perpendicular to the crack surface can suppress crack initiation and growth, and that the stress intensity factor varies little with the increasing of the strip's height.

Design of Offset Dual-Shaped Reflector Systems for Compact Antenna Test Range (콤팩트 안테나 테스트 레인지용 경면수정 오프셋 복반사경 시스템의 설계)

  • Noh, Sung-Min;Choi, Hak-Keun;Lim, Sung-Bin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.451-460
    • /
    • 2008
  • Gregorian offset dual-shaped reflector antennas have been widely used in the satellite communication systems for their high gain and low sidelobe characteristics. However, in this paper, it is designed as the CATR(Compact Antenna Test Range) reflector system, and its near-field characteristics are investigated. The CATR facility needs to provide an uniform plane wave with the minimum amplitude and phase ripple and the low cross polarization to the test region. Therefore, the reflector near-field patterns are calculated and presented with the variations of the aperture power distribution, the feed horn pattern, and the distance from the aperture to the test zone. Also, the offset dual-shaped reflector is fabricated at 30 GHz, and its near-field patterns are measured. The measured results are in good agreement with the calculated results. From theses results, we confirm that the designed offset dual-shaped reflector can be used as the reflector system for the compact antenna test range.

A Novel Carbon Nanotube FED Structure and UV-Ozone Treatment

  • Chun, Hyun-Tae;Lee, Dong-Gu
    • Journal of Information Display
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • A 10" carbon nanotube field emission display device was fabricated with a novel structure with a hopping electron spacer (HES) by screen printing technique. HES plays a role of preventing the broadening of electron beams emitted from carbon nanotubes without electrical discharge during operation. The structure of the novel tetrode is composed of carbon nanotube emitters on a cathode electrode, a gate electrode, an extracting electrode coated on the top side of a HES, and an anode. HES contains funnel-shaped holes of which the inner surfaces are coated with MgO. Electrons extracted through the gate are collected inside the funnel-shaped holes. They hop along the hole surface to the top extracting electrode. In this study the effects of the addition of HES on emission characteristics of field emission display were investigated. An active ozone treatment for the complete removal of residues of organic binders in the emitter devices was applied to the field emission display panel as a post-treatment.

Simulation of the Strip Type CNT Field Emitter Triode Structure (띠 모양의 에미터를 가지는 탄소나노튜브 삼전극 전계방출 디스플레이 소자의 시뮬레이션)

  • 류성룡;이태동;김영길;변창우;박종원;고성우;천현태;고남제
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1023-1028
    • /
    • 2003
  • The field emission characteristics are studied by simulation for carbon nanotube triode structures with a strip-shaped emitter and a gate hole aligned with it. Two structures, one with double-edge and the other with single edge are analyzed. They show good emission characteristics. Emissions of electrons are concentrated on the edges of emitter and the emitted current increases as the distance between emitter and gate decreases. For single-edged emitter, the emitted electrons form a narow strip-shaped beam which has a good directionality. These triode structures have advantages in that they can be easily fabricated and aligned for assembly.

The influence of initial stresses on energy release rate and total electro-mechanical potential energy for penny-shaped interface cracks in PZT/Elastic/PZT sandwich circular plate-disc

  • Akbarov, Surkay D.;Cafarova, Fazile I.;Yahnioglu, Nazmiye
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.259-276
    • /
    • 2018
  • This paper studies the energies and energy release rate (ERR) for the initially rotationally symmetric compressed (or stretched) in the inward (outward) radial direction of the PZT/Elastic/PZT sandwich circular plate with interface penny-shaped cracks. The investigations are made by utilizing the so-called three-dimensional linearized field equations and relations of electro-elasticity for piezoelectric materials. The quantities related to the initial stress state are determined within the scope of the classical linear theory of piezoelectricity. Mathematical formulation of the corresponding problem and determination of the quantities related to the stress-strain state which appear as a result of the action of the uniformly normal additional opening forces acting on the penny-shaped crack's edges are made within the scope of the aforementioned three-dimensional linearized field equations solution which is obtained with the use of the FEM modelling. Numerical results of the energies and ERR and the influence of the problem parameters on these quantities are presented and discussed for the PZT- 5H/Al/PZT-5H, PZT-4/Al/PZT-4, $BaTiO_3/Al/BaTiO_3$ and PZT-5H/StPZT-5H sandwich plates. In particular, it is established that the magnitude of the influence of the piezoelectricity and initial loading on the ERR increases with crack radius length.