• Title/Summary/Keyword: Shape representation

Search Result 312, Processing Time 0.033 seconds

Advanced Representation Method of Hand Motion by Cheremes Analysis in KSL (수화소 분석을 통한 손동작 움직임 표현방법)

  • Lee, Boo-Hyung;Song, Pi1-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.8
    • /
    • pp.1067-1075
    • /
    • 2006
  • This paper proposes a advanced representation method of hand motion by cheremes analysis in korean sign language. The proposed method is the representation method which apply to the hand motion used in KSL(Korean Sign Language) to represent rich and united hand motion. Words or sentences in KSL are completed by combination of elements called as Cheremes, that is, a hand movement orientation, a finger shape, a hand position, etc. In this paper, Cheremes composing the KSL is divided and represented by 5 elements: the hand movement orientation(HMO), finger shape(FS), hand orientation(HO), hand position(HP) and number of using hand (HN). Each cheremes is expressed by more various characteristics. For example, The hand movement orientation means orientations which the hand move while the sign language is done and can be expressed by 17orientation components. The finger shape means various shapes which fingers can take and represented by 17 components. The Orientation of hand is expressed by 2 characteristics according to whether we use the palm of the hand or the back. The position of hand means specific regions in body which hand(s) is placed while the sign language is done and divided by 8 regions. Finally, the number of hand means whether use only one hand or both hands and is expressed by 2 characteristics. The proposed method has been tested with KSL words and sentences and the results have shown that they can be expressed completely by the proposed representation method.

  • PDF

Shape Design Optimization of High-Speed Air Vehicles Using Non-Uniform Rational B-Splines (NURBS 곡선을 이용한 고속비행체 최적형상설계)

  • Kim Sang-Jin;Lee Jae-Woo;Byun Yung-Hwan;Kim Myung-Seong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.72-77
    • /
    • 2001
  • The computational efficiency of an shape optimization procedure is highly dependent upon the proper selection of shape representation methods and design variables. In this study, shape functions, Bezier and NURBS(non-uniform rational B-splines) curves are selected as configuration generation methods and their efficiencies on the nose shape design of high-speed air vehicles, are compared. The effects of the number of control points, weighting factors and the optimization methods when utilizing the NURBS curves, are investigated. By implementing Bezier and NURBS curves, shapes having lower drag than the optimization case utilizing the shape functions, were obtained, hence it was demonstrated that these curves have better capability in representing the configuration. Efforts will be given to improve the convergence behavior when utilizing the NURBS, hence to reduce the number of Navier-Stokes analysis calculations.

  • PDF

Hierarchical Shape Decomposition of Grayscale Image (다치영상의 계층적 형상분해)

  • 최종호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.595-598
    • /
    • 2004
  • In this paper, a shape decomposition method using morphological operations is studied for decomposing the complex shape in 2-D mage into its simple primitive elements. The serious drawback of conventional shape representation algorithm is that the primitive elements are extracted too much to represent the shape and the processing time is long. To solve these problems, a new shape decomposition algorithm using the 8 bit planes obtained from gray code is proposed.

  • PDF

Parametric Macro for Two-Dimensional Layout on the Auto-CAD System

  • Kim, Yunyong;Park, Jewoong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.253-260
    • /
    • 2000
  • In recent years, a number of successful nesting approaches have been developed by using the various heuristic algorithms, and due to their application potential several commercial CAD/CAM packages include a nesting module for solving the layout problem. Since a large portion of the complexity of the part nesting problem results from the overlapping computation, the geometric representation is one of the most important factors to reduce the complexity of the problem. The proposed part representation method can easily handle parts and raw materials with widely varying geometrical shape by using the redesigning modules. This considerably reduces the amount of processed data and consequently the run time of the computer. The aim of this research is to develop parametric macro for two-dimensional layout on the Auto-CAD system. Therefore, this research can be called "pre-nesting".

  • PDF

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spatial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triagulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triagular facets : the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally ; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF

Simulation of wind process by spectral representation method and application to cooling tower shell

  • Choi, Chang-Koon;Noh, Hyuk-Chun
    • Wind and Structures
    • /
    • v.2 no.2
    • /
    • pp.105-117
    • /
    • 1999
  • The various spectral density functions of wind are applied in the wind process simulation by the spectral representation method. In view of the spectral density functions, the characteristics of the simulated processes are compared. The ensemble spectral density functions constructed from the simulated sample processes are revealed to have the similarity not only in global shape but also in the maximum values with the target spectral density functions with a high accuracy. For the correlation structure to be satisfied in the circumferential direction on the cooling tower shell, a new formula is suggested based on the mathematical expression representing the circumferential distribution of the wind pressure on the cooling tower shell. The simulated wind processes are applied in the dynamic analysis of cooling tower shell in the time domain and the fluctuating stochastic behavior of the cooling tower shell is investigated.

Parametric Macro for Two-Dimensional Layout on the Auto-CAD System

  • Kim, Yunyoung;Park, Jewoong
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.3
    • /
    • pp.13-20
    • /
    • 2000
  • In recent years, a number of successful nesting approaches have been developed by using the various heuristic algorithms, and due to their application potential several commercial CAD/CAM packages include a nesting module for solving the layout problems. Since a large portion of the complexity of the part nesting problem results from the overlapping computation, the geometric representation is one of the most important factors to reduce the complexity of the problem. The proposed part representation method can easily handle parts and raw materials with widely varying geometrical shape by using the redesigning modules. This considerably reduces the amount of processed data and consequently the run time of the computer. The aim of this research is to develop parametric macro for two-dimensional layout on the Auto-CAD system. Therefore, this research can be called "pre-nesting".ing".uot;.

  • PDF

Visualization of Integration of Surface Geometric Modeling and Shell Finite Element Based on B-Spline Representation (스플라인 곡면 모델링과 쉘 유한요소와의 연동 가시화)

  • 조맹효;노희열;김현철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.505-511
    • /
    • 2002
  • In the present study, we visualize the linkage framework between geometric modeling and shell finite element based on B-spline representation. For the development of a consistent shell element, geometrically exact shell elements based on general curvilinear coordinates is provided. The NUBS(Non Uniform B-Spline) is used to generate the general free form shell surfaces. Employment of NUBS makes shell finite element handle the arbitrary geometry of the smooth shell surfaces. The proposed shell finite element .model linked with NUBS surface representation provides efficiency for the integrated design and analysis of shell surface structures. The linkage framework can potentially provide efficient integrated approach to the shape topological design optimizations for shell structures.

  • PDF

B-Spline Representation of Active Contours by Dynamic Programming (동적 프로그래밍에 의한 활성 윤곽선의 B-스플라인 표현)

  • Kim, Dong-Geun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1962-1969
    • /
    • 1999
  • Active contours are deformable energy minimizing curves controlled by internal energy and external energy. The internal energy is constraint to preserve a smooth curve, and the external energy guides the curve towards image features. B-spline representation of active contours can be of great benefits in the segmentation and description whose shape is characterized by its defining polygon or control points. Menet et al proposed B-spline representation of active contours based on dynamic programming. The method is simple and efficient by comparing over finite difference method.

  • PDF

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spacial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triangulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triangular facets: the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF