• Title/Summary/Keyword: Shape of displacement

Search Result 1,048, Processing Time 0.025 seconds

A Study on the Optimal Design of TMD According to the Shape of Large Spatial Structures Part 1 (대공간 구조물의 형상에 따른 TMD 최적 설계에 관한 연구 Part 1)

  • Bae, Seok-Hong;Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.73-81
    • /
    • 2020
  • In this study, a tuned mass damper(TMD) was installed to control the displacement response to earthquakes by generalizing to six analysis models according to the shape of the upper structure based on the case of various large spatial structures around the world. The six analysis models are ribbed type, latticed type, elliptical type, gable type, barrel type, and stadium type composed of 3D arch trusses. In this paper, ribbed type, latticed type and elliptical type were analyzed. The mass of each TMD was set to 1% of the total structural mass. Result of analyzing the optimal number and position of the analysis model, the displacement response control was the most excellent in the model with 6 and 8 TMDs, and the displacement response decreased in most cases. The displacement response control was better with installing the TMD at the edge point than focusing the TMD at the center of the analysis model. However, when 10 or more TMDs are installed or concentrated in the center, large loads intensively act on the structure, resulting in increased displacement. Therefore, although it is slightly different depending on the shape, it is judged that the displacement response control is the best to install 6 and 8 TMDs at the close to the edge point.

Elastic Crack Opening Displacement of Slanted Circumferential Through-Wall Cracks in Thick-Walled Cylinder (원주방향 경사관통균열이 존재하는 두꺼운 배관의 탄성 균열열림변위)

  • Han, Tae-Song;Huh, Nam-Su;Shim, Do-Jun;Kim, Jin-Su;Lee, Jin-Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.3
    • /
    • pp.13-22
    • /
    • 2012
  • According to recent research on leak-rate estimates to assess rupture probabilities of nuclear piping which contains a circumferential surface/through-wall cracks due to PWSCC, i.e., xLPR (Extremely Low Probability of Rupture) program, it has been revealed that the use of crack shape with an idealized circumferential through-wall crack during actual crack growth can lead to overestimate of the leak-rate. Thus, for accurate estimation of the leak-rate during crack growth, the more realistic crack shape that can simulate the crack shape transition from surface crack to through-wall crack should be used. In this context, in the present study, the elastic crack opening displacement of slanted circumferential through-wall crack in thick-walled cylinder was proposed based on 3-dimensional elastic finite element fracture mechanics analyses. To propose the elastic crack opening displacement of slanted circumferential through-wall crack in thick-walled cylinder, the geometric variables affecting crack opening displacement, i.e., thickness of cylinder, reference inner crack length and slant crack ratio were systematically varied. In terms of loading conditions, axial tension, global bending moment and internal pressure were considered. The present results can be applied to calculate the leak-rate considering more realistic crack shape transition from surface crack to idealized through-wall crack, and can be expected to enhance current leak-rate estimation scheme, for instance, in xLPR program etc.

Sensitivity and optimisation procedures for truss structures under large displacement

  • Bothma, A.S.;Ronda, J.;Kleiber, M.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.111-126
    • /
    • 1999
  • The work presented here focuses on the development of suitable discretised formulations, for large-displacement shape and non-shape design sensitivity analysis (DSA), which enable the straightforward incorporation of structural optimisation into established finite element analysis (FEA) codes. For the generalised displacement-based functional the design sensitivity vector has been expressed in terms of displacement sensitivity. The Total Lagrangian formulation is utilised for modelling of large deformation of truss structures. The variational formulation of the sensitivity analysis procedure is discretised by using "pseudo" - finite elements, Results are presented for the sensitivity analysis and optimisation of standard truss structures. For the purposes of this work, the analysis and optimisation procedures outlined below are incorporated into the FEA code ABAQUS.

Human Limbs Modeling from 3D Scan Data (3차원 스캔 데이터로부터의 인체 팔, 다리 형상 복원)

  • Hyeon, Dae-Eun;Yun, Seung-Hyeon;Kim, Myeong-Su
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • This paper presents a new approach for modeling human limbs shape from 3D scan data. Based on the cylindrical structure of limbs, the overall shape is approximated with a set of ellipsoids through ellipsoid fitting and interpolation of fit-ellipsoids. Then, the smooth domain surface representing the coarse shape is generated as the envelope surface of ellipsoidal sweep, and the fine details are reconstructed by constructing parametric displacement function on the domain surface. For fast calculation, the envelope surface is approximated with ellipse sweep surface, and points on the reconstructed surface are mapped onto the corresponding ellipsoid. We demonstrate the effectiveness of our approach for skeleton-driven body deformation.

  • PDF

Analysis of Slip Displacement and Wear in Oscillating Tube supported by Plate Springs (튜브진동 시 판스프링 지지부의 미끄럼변위와 마멸 분석)

  • Kim Hyung-Kyu;Lee Young-Ho;Song Ju-Sun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.41-49
    • /
    • 2003
  • Tube oscillation behaviour is experimentally investigated for the study on the fuel rod fretting that is caused by the flow-induced vibration in nuclear reactor. The experiment was conducted in all at room temperature. The specimen of tube assembly was supported by plate springs which simulated the spacer grids and fuel rods of a fuel assembly. To investigate the influence of contact condition between the grids and rods, normal load of 10 and 5 N, gaps of 0.1 and 0.3 mm were applied. The range of the oscillation at the center of the fuel rod specimen was varied as 0.2, 0.3 and 0.4 mm to simulate the fuel rod vibration due to flow. Displacements near the contact were measured with four displacement sensors during the tube oscillation. As results, the shape of oscillation (phase) varied depending on the contact condition. The oscillation displacement increased considerably from the contact to gap condition. The displacement increased further as the gap size increased. It is regarded that the spring shape influences the tube oscillation behaviour. Simple calculation showed that the slip displacement was very small. Therefore, cumulative damage concept is necessary for the fuel rod wear. The mechanism of plowing is thought required to explain the severe wear in the case of gap existence.

  • PDF

Analysis of Geometric Shape and Displacement in Coastal Structure (해안 구조물의 기하형상과 변위 해석)

  • Mun, Do-Yeoul;Baek, Tae-Kyung;Lee, Tack-Gon;Lee, Sung-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.114-123
    • /
    • 2012
  • This study is aimed to assess the stability of cable bridge by determining the geometric shape of the suspension bridge among the domestic coastal structures in public use after their completion of construction and the displacement of the target suspension bridge after public use. For this purpose, this study calculated the length between pylon piers for each period, sag, sag ratio and the displacement of pylon. Compared to the management standards for each step across different pylon behaviors of the target suspension bridge, this study found that the target suspension bridge behaves stably within the maintenance standards. To identify the behaviors of a suspension bridge accurately, the priority is put on the determination of geometric shape. Therefore, it is required to determine the surveyed shape model on a regular basis across public use period and increased traffics, which is expected to contribute considerably to ensuring the stability of the suspension bridge in its maintenance.

Design of Cymbal Displacement Amplification Device for Micro Punching System (마이크로 펀칭시스템 구현을 위한 심벌변위확대기구의 설계)

  • Choi, Jong-Pil;Lee, Kwang-Ho;Lee, Hye-Jin;Lee, Nak-Gue;Kim, Seong-Uk;Chu, Andy;Kim, Byeong-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • This paper presents the development of a micro punching system with modified cymbal mechanism. To realize the micro punching, we introduced the hybrid system with a macro moving part and micro punching part. The macro moving part consists of a ball screw, a linear guide and the micro step motor and micro punching part includes the PZT actuators and displacement amplification device with modified cymbal mechanism. The PZT actuator is capable of producing very large force, but they provide only limited displacements which are several micro meters. Thus the displacement amplification device is necessary to make those actuators more efficient and useful. For this purpose, a cymbal mechanism in series is proposed. The finite element method was used to design the cymbal mechanism and to analyze the mode shape of the one. The displacement and mode shape error between the FEM results and experiments are within 10%. A considerable design effort has been focused on optimizing the flexure hinge to increase the output displacement and punching force.

Helical coil springs property in Cu-Zn-Al shape memory alloy (Cu-Zn-Al 형상기억합금의 코일스프링 특성)

  • Kwon, Hee-Kyung;Choi, Chang-Soo;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.187-197
    • /
    • 1996
  • In this study, the properties of coil spring made by Cu-Zn-Al and B added shape memory alloys are investigated. The measurement of recovery displacement and energy with increasing weight, and thermocycling properties have been studied using displacement measuring device. Transformation temperature and phase change by thermocycling have been also investigated by DSC and X-ray diffractometer. Grain size of the alloy is refined from 1.2mm to $400{\mu}m$ by 0.06wt% of B addition. The maximum recovery energy of the coil spring for B added alloy is larger than that of no B added alloy, it is because of grain refinement. And shape memory ability of the coil spring by thermocycling decrease with increasing thermocycling after thermocycle under load. The degradation of shape memory properties of coil spring by thermocycling is improved by B addition.

  • PDF

Design and investigation of a shape memory alloy actuated gripper

  • Krishna Chaitanya, S.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.541-558
    • /
    • 2014
  • This paper proposes a new design of shape memory alloy (SMA) wire actuated gripper for open mode operation. SMA can generate smooth muscle movements during actuation which make them potentially good contenders in designing grippers. The principle of the shape memory alloy gripper is to convert the linear displacement of the SMA wire actuator into the angular displacement of the gripping jaw. Steady state analysis is performed to design the wire diameter of the bias spring for a known SMA wire. The gripper is designed to open about an angle of $22.5^{\circ}$ when actuated using pulsating electric current from a constant current source. The safe operating power range of the gripper is determined and verified theoretically. Experimental evaluation for the uncontrolled gripper showed a rotation of $19.97^{\circ}$. Forced cooling techniques were employed to speed up the cooling process. The gripper is simple and robust in design (single movable jaw), easy to fabricate, low cost, and exhibits wide handling capabilities like longer object handling time and handling wide sizes of objects with minimum utilization of power since power is required only to grasp and release operations.

A study on the Dynamic Characteristics of Bidirectional Acutator using Shape Memory Alloy (형상기억합금을 이용한 차동식 액츄에이터의 동특성연구)

  • 정상화;김현욱;장우양;김경석;차경래;나윤철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.755-758
    • /
    • 1997
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research of dynamic characteristics is very deficient. In this paper, the helical spring is fabricated with NiTi SMA wire of high resistivity The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA actuator is analyzed.

  • PDF