• Title/Summary/Keyword: Shape of displacement

Search Result 1,054, Processing Time 0.027 seconds

A new refined hyperbolic shear deformation theory for laminated composite spherical shells

  • Kada, Draiche;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.707-722
    • /
    • 2022
  • In this study, a new refined hyperbolic shear deformation theory (RHSDT) is developed using an equivalent single-layer shell displacement model for the static bending and free vibration response of cross-ply laminated composite spherical shells. It is based on a new kinematic in which the transverse displacement is approximated as a sum of the bending and shear components, leading to a reduction of the number of unknown functions and governing equations. The proposed theory uses the hyperbolic shape function to account for an appropriate distribution of the transverse shear strains through the thickness and satisfies the boundary conditions on the shell surfaces without requiring any shear correction factors. The shell governing equations for this study are derived in terms of displacement from Hamilton's principle and solved via a Navier-type analytical procedure. The validity and high accuracy of the present theory are ascertained by comparing the obtained numerical results of displacements, stresses, and natural frequencies with their counterparts generated by some higher-order shear deformation theories. Further, a parametric study examines in detail the effect of both geometrical parameters (i.e., side-to-thickness ratio and curvature-radius-to-side ratio), on the bending and free vibration response of simply supported laminated spherical shells, which can be very useful for many modern engineering applications and their optimization design.

Application of 3-D Laser Scanner for the Measurement of Slope Displacement (사면 변형 측정을 위한 3차원 레이저 스캐너의 적용)

  • Oh, Seok-Hoon;Suh, Baek-Soo
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.555-562
    • /
    • 2010
  • Three-dimensional laser scanner was used to accurately measure any possible strain on a slope under pertaining stress with the time difference of 7 months. The laser scanner has the ability to measure the 3-D coordinate of a target point by calculating the travel time of laser beam between the laser device and the target point, and has been proved to be effective for analysis of the displacement of slopes or large construction. The scanning data measured with time difference were analyzed to find any strain by approaches of plane angle change, curvature variation, twist of frame, displacement of merging point, etc. From the analysis, some weak points showing heavily distorted shape were detected, which was used to design the reinforcement.

Analytical Prediction of Heating Temperature to Manufacture Rotor with Shrink Fit for Ultra High Speed Motor According to Change Dimension of Rotor (초고속기용 열박음 로터 제작을 위한 로터의 치수에 따른 가열온도의 해석적 예측)

  • Hong, Do-Kwan;Woo, Byung-Chul;Jeong, Yeon-Ho;Koo, Dae-Hyun;Ahn, Chan-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.963-968
    • /
    • 2009
  • This paper deals with shrink fit analysis of rotor by 2D cross-section, 2D axis-symmetry, and 3D FEM model. And this paper presents 2nd order approximation function of thermal expansion displacement by design variables (shape dimension, heating temperature, sleeve length, interference etc.), table of orthogonal array and RSM(response surface methodology). The possibility of the rotor with shrink fit is evaluated by thermal expansion displacement. If thermal expansion displacement is larger than interference, shrink fit enable to make the rotor. 2D axis-symmetry model and 3D model are more reasonable than 2D cross-section model, because stress and strain is different along length of shaft.

Static Modeling of a Miniaturized Continuum Robot for Surgical Interventions and Displacement Analysis under Lateral External Loads (중재 시술 적용을 위한 소형 연속체 로봇의 정역학 모델링 및 외부 측면 하중에 의한 변위 분석)

  • Kim, Kiyoung;Woo, Hyunsoo;Cho, Jangho;Shin, Minki;Suh, Jungwook
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.301-308
    • /
    • 2020
  • In this paper, we deal with the static modeling of a continuum robot that can perform surgical interventions. The proposed continuum robot is made of stainless steel wires and a multi lumen flexible tube using a thermoplastic elastomer. This continuum robot could be most severely deformed in physical contact with narrow external environments, when a lateral external force acts at the distal tip of the continuum robot. In order to predict the shape and displacement under the lateral external force loading, the forward kinematics, the statics modeling, the force-moment equilibrium equation, and the virtual work-energy method of the continuum robot are described. The deflection displacements were calculated using the virtual work-energy method, and the results were compared with the displacement obtained by the conventional cantilever beam theories. In conclusion, the proposed static modeling and the virtual work-energy method can be used in arrhythmia procedure simulations.

Displacement Response Analysis According to TMD Mass Change of Dome-Shaped Large Spatial Structures (돔 형상 대공간 구조물의 TMD 질량 변화에 따른 변위응답분석)

  • Lee, A-Rom;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.95-104
    • /
    • 2021
  • As people's living standards and cultural standards have developed, interest in culture and art has increased, and the demand for large space structures where people can enjoy art, music, and sports has increased. As it accommodates a large number of personnel, it is most important to ensure safety of large spatial structures, and can be used as a space where people can evacuate in case of a disaster. Large spatial structures should be prepared for earthquake loads rather than wind loads. In addition to damage to the structure due to earthquakes, there are cases in which it was not utilized as a space for evacuation due to the fall of objects installed on top of the structure. Therefore, in this study, the dome-shaped large spatial structure is generalized and the displacement response according to the number of installations, position and mass is analyzed using a tuned mass damper(TMD) that is representative vibration control device.

Active Earth Pressure Acting on the Cylindrical Retaining Wall of a Shaft (원형수직구의 흙막이 벽체에 작용하는 주동토압)

  • Chun, Byungsik;Shin, Youngwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.15-24
    • /
    • 2006
  • It is well known that earth pressure on the cylindrical open caisson and cylindrical retaining wall of a shaft is less than that at-rest and in plane strain condition because of the horizontal and vertical arching effects due to wall displacement and stress relief. In order to examine the earth pressure distribution of a cylindrical wall, model tests were performed in dry sand for the care of constant wall displacement with depth. Model test apparatus which can control wall displacement, wall friction, and wall shape ratio was developed. The effects of various factors that influence earth pressure acting on the cylindrical retaining wall of a shaft were investigated.

  • PDF

Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates (일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF

Detection of Tool Failure by Wavelet Transform (PDMS를 이용한 마이크로 구동기의 제작 및 평가)

  • Lee, Dong Weon;Park, Jong Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.72-77
    • /
    • 2008
  • In this study, we propose and develop PDMS-based modular actuators. The microactuator which looks like a small insect uses thermal expansion power of the PDMS (polydimethylsiloxane; $sylgar^{(R)}$ 184 silicone elastomer). The PDMS-based microactuator provides a large displacement due to a high thermal expansion coefficient (approximately 310ppm). The microacruator with 1mm length $350{\mu}m$ width is optimized by using a numerical analysis. The shape of the PDMS actuatoris variously designed. They are placed at several positions to find the optimal position that provides a high transformation ratio. The PDMS-based microactuators are fabricated using a conventional micromaching technique. The fabricated microactuator is heated using a hot-plate. The actuator displacement is measured as a function of temperature from $27^{\circ}C$ to $300^{\circ}C$. The experimental results are compared to the simulation result. When heating temperature up to $300^{\circ}C$ is applied to the PDMS actuator, each V-groove-shaped joint is actuated $30{\mu}$ mat $300^{\circ}C$. Anotherdesign of the microactuator has a maximum displacement of about 656mm.

  • PDF

Development of an Measuring System for Pulse Wave Corresponding to Different Radial Artery Diameters Caused by Indentation (요골동맥 직경 변화에 따른 맥파 측정 시스템 개발)

  • Lee, Jeon;Woo, Young-Jae;Jeon, Young-Ju;Lee, Yu-Jung;Kim, Jong-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2351-2357
    • /
    • 2008
  • Noninvasive radial artery pulse wave has been widely used not only for the pulse wave analysis(PWA) itself but also for assessment of arterial stiffness with estimated aortic pulse wave from peripheral pulse wave. However, it has been found that the deformation of pulse shape can be caused readily by changing measuring position, indentation pressure, and so on. So, in this study, we have developed a system which can measure radial pulse wave and skin displacement simultaneously while the indentation body goes down to occlude subject's radial artery. This system can be divided into a measuring apparatus part, an indentation control hardware part, a data acquisition part and a control and computation part. And, the measuring apparatus consists of an arm-rest, a step motor, an indentation body, a laser displacement sensor(LK-G30, Keyence Co.) and pulse wave sensor. Under load-free condition and radial artery loaded condition, the evaluation of developed system has been performed. From these results, we can conclude: 1) The developed system can control the indentation body quantitatively and the adopted laser displacement sensor shows linear output characteristic even with skin as a reflector. 2) This system can measure the pulse wave and the displacement of indentation body, that is, skin displacement simultaneously at each specific level of indentation body. 3) This system can provide the number of motor steps used to get down the indentation body, the measured skin displacement, the calculated indentation pressure, the calculated pulse pressure and the pulse waveform as well as the information generated by combining these with each others. 4) This system can reveal the relationship between the morphological changes of pulse wave and the estimated displacement of radial artery wall by indentation. Consequently, the developed system can furnish more abundant information on radial artery than previous diagnosis systems based on tonometric measurement. In further study, we expect to setup the standard measuring process and to concrete the algorithm for the estimation of radial artery's diameter and of displacement of radial artery's wall. Furthermore, with well designed clinical studies, we hope to turn out the usefulness of developed system in the field of cardiovascular system evaluation.

A Study on the Thermal Characteristics of Spindle for the Spinning Machine (스피닝 머신용 대형주축의 열특성에 관한 연구)

  • Jeong D.S.;Kim S.T.;Choi D.B.;Ye S.B.;Seol S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.555-559
    • /
    • 2005
  • Spinning process is a chipless metal forming method for axis-symmetric parts, which is more economical, efficient and versatile method for producing parts than other sheet metal forming process such as stamping or deep drawing. The large-sized spindle for spinning machine is the equipment to ferm a high-pressure vessel into the demanded shape. The important problem in the spindle system fur spinning machines is to reduce and minimize the thermal effect by motor and bearings. In this study, the effect of heat generation of bearings for the large-sized spindle is considered. Temperature distribution and thermal displacement of the spindle system for spinning machine can be analyzed by using the finite element method. The numerical results are compared with the measured data. The results show that temperature distribution and thermal displacement can be reasonably estimated by using the finite element method and the three dimensional model.

  • PDF