Browse > Article
http://dx.doi.org/10.12989/sem.2022.84.6.707

A new refined hyperbolic shear deformation theory for laminated composite spherical shells  

Kada, Draiche (Department of Civil Engineering, University of Tiaret)
Abdelouahed, Tounsi (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes)
Publication Information
Structural Engineering and Mechanics / v.84, no.6, 2022 , pp. 707-722 More about this Journal
Abstract
In this study, a new refined hyperbolic shear deformation theory (RHSDT) is developed using an equivalent single-layer shell displacement model for the static bending and free vibration response of cross-ply laminated composite spherical shells. It is based on a new kinematic in which the transverse displacement is approximated as a sum of the bending and shear components, leading to a reduction of the number of unknown functions and governing equations. The proposed theory uses the hyperbolic shape function to account for an appropriate distribution of the transverse shear strains through the thickness and satisfies the boundary conditions on the shell surfaces without requiring any shear correction factors. The shell governing equations for this study are derived in terms of displacement from Hamilton's principle and solved via a Navier-type analytical procedure. The validity and high accuracy of the present theory are ascertained by comparing the obtained numerical results of displacements, stresses, and natural frequencies with their counterparts generated by some higher-order shear deformation theories. Further, a parametric study examines in detail the effect of both geometrical parameters (i.e., side-to-thickness ratio and curvature-radius-to-side ratio), on the bending and free vibration response of simply supported laminated spherical shells, which can be very useful for many modern engineering applications and their optimization design.
Keywords
bending; cross-ply laminated composite; free vibration; RHSDT; spherical shells;
Citations & Related Records
Times Cited By KSCI : 14  (Citation Analysis)
연도 인용수 순위
1 Pagano, N.J. (1970), "Exact solutions for bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34. https://doi.org/10.1177/002199837000400102.   DOI
2 Pai, P.F. (1995), "A new look at the shear correction factors and warping functions of anisotropic laminates", Int. J. Solid. Struct., 32(16), 2295-2313. https://doi.org/10.1016/0020-7683(94)00258-X.   DOI
3 Panda, S.K. and Singh, B.N. (2013), "Thermal postbuckling behavior of laminated composite spherical shell panel using NFEM", Mech. Bas. Des. Struct. Mach., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330.   DOI
4 Parhi, A. and Singh, B.N. (2014), "Stochastic response of laminated composite shell panel in hygrothermal environment", Mech. Bas. Des. Struct., 42(4), 454-482. https://doi.org/10.1080/15397734.2014.888006.   DOI
5 Reddy, J.N. (1984a), "Exact solutions of moderately thick laminated shells", J. Eng. Mech., 110(5), 794-809. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:5(794).   DOI
6 Reddy, J.N. (1984b), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.   DOI
7 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC, Boca Raton, FL.
8 Reddy, J.N. and Liu, C.F. (1985), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23(3), 319-330. https://doi.org/10.1016/0020-7225(85)90051-5.   DOI
9 Sahoo, S. (2014), "Laminated composite stiffened shallow spherical panels with cutouts under free vibration-A finite element approach", Int. J. Eng. Sci. Technol., 17(4), 247-259. https://doi.org/10.1016/j.jestch.2014.07.002.   DOI
10 Sahoo, S.S., Panda, S.K. and Mahapatra, T.R. (2016), "Static, free vibration and transient response of laminated composite curved shallow panel-an experimental approach", Eur. J. Mech.-A/Solid., 59, 95-113. https://doi.org/10.1016/j.euromechsol.2016.03.014.   DOI
11 Sahu, S.K. and Datta, P.K. (2001), "Parametric resonance characteristics of laminated composite doubly curved shells subjected to non-uniform loading", J. Reinf. Plast. Compos., 20(18), 1556-1576. http://doi.org/10.1106/U2VL-8673-4K1NJ1W7.   DOI
12 Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Mate., 13(7), 1707. https://doi.org/10.3390/ma13071707.   DOI
13 Sayyad, A.S. and Ghugal, Y.M. (2019), "Static and free vibration analysis of laminated composite and sandwich spherical shells using a generalized higher-order shell theory", Compos. Struct, 219, 129-146. https://doi.org/10.1016/j.compstruct.2019.03.054.   DOI
14 Selcuk, S., Fisher, A.l. and Williams, Ch. (2005), "Biomimesis and the geometric definition of shell structures in architecture", GA2005 8th Generative Art Conference, Politecnico di Milano University, Department of Architecture and Planning.
15 Shang, X. (2001), "Exact solution for free vibration of a hermetic capsule", Mech. Res. Commun., 28(3), 283-288. https://doi.org/10.1016/S0093-6413(01)00175-6.   DOI
16 Sheng, H. and Ye, J. (2003), "A three-dimensional state space finite element solution for laminated composite cylindrical shells", Comput. Meth. Appl. Mech. Eng., 192(22), 2441-2459. https://doi.org/10.1016/S0045-7825(03)00265-2.   DOI
17 Shinde, B.M. and Sayyad, A.S. (2020), "Analysis of laminated and sandwich spherical shells using a new higher-order theory", Adv. Aircraft Spacecraft Sci., 7(1), 19-40. https://doi.org/10.12989/aas.2020.7.1.019.   DOI
18 Shu, X.P. (1997), "A refined theory of laminated shells with higher-order transverse shear deformation", Int. J. Solid. Struct., 34(6), 673-683. https://doi.org/10.1016/S0020-7683(96)00048-0.   DOI
19 Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech, 94(3), 195-220. https://doi.org/10.1007/BF01176650.   DOI
20 Srinivas, S. (1974), "Analysis of laminated, composite, circular cylindrical shells with general boundary conditions", NASA Technical Report R-412.
21 Thakur, S.N., Chakraborty, S. and Ray, C. (2019), "Reliability analysis of laminated composite shells by response surface method based on HSDT", Struct. Eng. Mech., 72(2), 203-216. https://doi.org/10.12989/sem.2019.72.2.203.   DOI
22 Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020- 7225(91)90165-Y.   DOI
23 Ventsel, E. and Krauthammer, T. (2002), "Thin plates and shells: Theory, analysis, and applications", Appl. Mech. Rev., 55(4), B72-B73. https://doi.org/10.1115/1.1483356.   DOI
24 Viswanathan, K.K., Kim, K.S., Lee, J.H., Koh, H.S. and Lee, J.B. (2008), "Free vibration of multi-layered circular cylindrical shell with cross-ply walls, including shear deformation by using spline function method", J. Mech. Sci. Tech., 22(11), 2062-2075. https://doi.org/10.1007/s12206-008-0747-4.   DOI
25 Wang, Q., Shi, D., Liang, Q. and Pang, F. (2017), "Free vibrations of composite laminated doubly-curved shells and panels of revolution with general elastic restraints", Appl. Math. Model., 46, 227-262. https://doi.org/10.1016/j.apm.2017.01.070.   DOI
26 Whitney, J.M. (1973), "Shear correction factors for orthotropic laminates under static loads", J. Appl. Mech., 40(1), 302-304. https://doi.org/10.1115/1.3422950.   DOI
27 Yuan, Y., Zhao, K. and Xu, K. (2019), "Enhancing the static behavior of laminated composite plates using a porous layer", Struct. Eng. Mech., 72(6), 763-774. https://doi.org/10.12989/sem.2019.72.6.763.   DOI
28 Zhen, W. and Wanji, C. (2008), "A global-local higher order theory for multilayered shells and the analysis of laminated cylindrical shell panels", Compos. Struct., 84(4), 350-361. https://doi.org/10.1016/j.compstruct.2007.10.006.   DOI
29 Zenkour, A.M. (2015), "Thermal bending of layered composite plates resting on elastic foundations using four-unknown shear and normal deformations theory", Compos. Struct., 122, 260-270. http://doi.org/10.1016/j.compstruct.2014.11.064.   DOI
30 Zhen, N., Kai, Z., Xiuchang, H. and Hongxing, H. (2019), "Free vibration of stiffened laminated shells of revolution with a free-form meridian and general boundary conditions", Int. J. Mech. Sci., 157-158, 561-573. https://doi.org/10.1016/j.ijmecsci.2019.03.040.   DOI
31 Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.   DOI
32 Ali, H.T., Akrami, R., Fotouhi, S., Pashmforoush, F., Fragassa, C. and Fotouhi, M. (2020), "Fffect of the stacking sequence on the impact response of carbon-glass/epoxy hybrid composites", Facta Universitatis, Ser.: Mech. Eng., 18(1), 69-77. https://doi.org/10.22190/FUME191119010A.   DOI
33 Allam, O., Draiche, K., Bousahla, A.A, Bourada, F., Tounsi, A., Benrahou, K.H., Mahmoud, S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells", Comput. Concrete, 26(2), 185-201. https://doi.org/10.12989/cac.2020.26.2.185.   DOI
34 Bert, C.W. and Birman, V. (1988), "Parametric instability of thick orthotropic circular cylindrical shells", Acta Mechanica, 71, 61-76. https://doi.org/10.1007/BF01173938.   DOI
35 Belarbi, M.O., Daikh, A.A., Garg, A., Hirane, H., Houari, M.S.A., Civalek, O. and Chalak, H.D. (2023), "Bending and free vibration analysis of porous functionally graded sandwich plate with various porosity distributions using an extended layerwise theory", Arch. Civil Mech. Eng., 23(1), 1-24. https://doi.org/10.1007/s43452-022-00551-0.   DOI
36 Belarbi, M.O., Garg, A., Houari, M.S.A., Hirane, H., Tounsi, A. and Chalak, H.D. (2021), "A three-unknown refined shear beam element model for buckling analysis of functionally graded curved sandwich beams", Eng. Comput., 38(Suppl 5), 4273-4300. https://doi.org/10.1007/s00366-021-01452-1.   DOI
37 Bert, C.W. (1967), "Structural theory for laminated anisotropic elastic shells", J. Compos. Mater., 1(4), 414-423. https://doi.org/10.1177/002199836700100409.   DOI
38 Bert, C.W., Baker, J.L. and Egle, D.M. (1969), "Free vibrations of multilayer anisotropic cylindrical shells", J. Compos. Mater., 3(3), 480-499. https://doi.org/10.1177/002199836900300312.   DOI
39 Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164.   DOI
40 Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10, 215-296. https://doi.org/10.1007/BF02736224.   DOI
41 Chaudhuri, P.B., Mitra, A. and Sahoo, S. (2019), "Mode frequency analysis of antisymmetric angle-ply laminated composite stiffened hypar shell with cutout", Mech. Mech. Eng., 23(1), 162-171. http://doi.org/10.2478/mme-2019-0022.   DOI
42 Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C. and Polit, O. (2011), "Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Compos. Part B: Eng., 42(5), 127612-84. https://doi.org/10.1016/j.compositesb.2011.01.031.   DOI
43 Daikh, A. and Zenkour, A. (2020), "Bending of functionally graded sandwich nanoplates resting on Pasternak foundation under different boundary conditions", J. Appl. Comput. Mech., 6, 1245-1259. https://doi.org/10.22055/jacm.2020.33136.2166.   DOI
44 Doyle, J.F. (2001), Thin Plates and Shells, in Nonlinear Analysis of Thin-Walled Structures, Springer, New York, NY.
45 Duc, N.D. and Quan, T.Q. (2014), "Transient responses of functionally graded double curved shallow shells with temperature-dependent material properties in thermal environment", Eur. J. Mech. A Solid., 47, 101-123. https://doi.org/10.1016/j.euromechsol.2014.03.002.   DOI
46 Ganapathi, M., Patel, B.P. and Pawargi, D.S. (2002), "Dynamic analysis of laminated cross-ply composite non-circular thick cylindrical shells using higher-order theory", Int. J. Solid. Struct., 39(24), 5945-5962. https://doi.org/10.1016/S0020-7683(02)00495-X.   DOI
47 Garg, A. Chalak, H.D., Belarbi, M.O. and Zenkour, A.M. (2021a), "Hygro-thermo-mechanical based bending analysis of symmetric and unsymmetric power-law, exponential and sigmoidal FG sandwich beams", Mech. Adv. Mater. Struct., 29(25), 4523-4545. https://doi.org/10.1080/15376494.2021.1931993.   DOI
48 Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2020a), "A review of the analysis of sandwich FGM structures", Compos. Struct., 258, 113427. https://doi.org/10.1016/j. compstruct.2020.113427.   DOI
49 Garg, A., Belarbi, MO., Li, L. and Tounsi, A. (2022c), "Bending analysis of power-law sandwich FGM beams under thermal conditions", Adv. Aircraft Spacecraft. Sci., 9(3), 243-261. https://doi.org/10.12989/aas.2022.9.3.243.   DOI
50 Garg, A., Belarbi, M.O., Tounsi, A., Li, L., Singh, A. and Mukhopadhyay, T. (2022b), "Predicting elemental stiffness matrix of FG nanoplates using Gaussian Process Regression based surrogate model in framework of layerwise model", Eng. Anal. Bound. Elem., 143, 779-795. https://doi.org/10.1016/j.enganabound.2022.08.001.   DOI
51 Garg, A., Chalak, H.D. and Chakrabarti, A. (2020b), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater., 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.   DOI
52 Garg, A., Chalak, H.D., Belarbi, M.O., Chakrabarti, A. and Houari, M.S.A. (2021b), "Finite element-based free vibration analysis of power-law, exponential and sigmoidal functionally graded sandwich beams", J. Inst. Eng. India Ser. C, 102, 1167-1201. https://doi.org/10.1007/s40032-021-00740-5.   DOI
53 Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O. and Houari, M.S.A. (2022a), "A review of available theories and methodologies for the analysis of nano isotropic, nano functionally graded, and CNT reinforced nanocomposite structures", Arch Comput Meth. Eng., 29, 2237-2270. https://doi.org/10.1007/s11831-021-09652-0.   DOI
54 Ghodrati, B., Yaghootian, A., Ghanbar Zadeh, A. and Mohammad-Sedighi, H. (2018), "Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories", Wave. Random Complex Media, 28(1), 15-34. https://doi.org/10.1080/17455030.2017.1308582.   DOI
55 Gould, P.L. (2013), Thin Plates and Shells, in Introduction to Linear Elasticity, Springer, 187-228.
56 Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017), "Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., 6(4), 349-361. https://doi.org/10.12989/amr.2017.6.4.349.   DOI
57 Haldar, S., Majumder, A. and Kalita, K. (2019), "Bending analysis of composite skew cylindrical shell panel", Struct. Eng. Mech., 70(1), 125-131. https://doi.org/10.12989/sem.2019.70.1.125.   DOI
58 He, J.H. (2020), "A new proof of the dual optimization problem and its application to the optimal material distribution of SiC/graphene composite", Rep. Mech. Eng., 1(1), 187-191. https://doi.org/10.31181/rme200101187h.   DOI
59 Jin, G., Ye, T., Chen, Y., Su, Z. and Yan, Y. (2013), "An exact solution for the free vibration analysis of laminated composite cylindrical shells with general elastic boundary conditions", Compos. Struct., 106, 114-127. https://doi.org/10.1016/j.compstruct.2013.06.002.   DOI
60 Khayat, M., Poorveis, D., Moradi, S. and Hemmati, M. (2016), "Buckling of thick deep laminated composite shell of revolution under follower forces", Struct. Eng. Mech., 58(1), 59-91. https://doi.org/10.12989/sem.2016.58.1.059.   DOI
61 Khdeir, A.A., Rajab, M.D. and Reddy, J.N. (1992), "Thermal effects on the response of cross-ply laminated shallow shells", Int. J. Solid. Struct., 29(5), 653-667. https://doi.org/10.1016/0020-7683(92)90059-3.   DOI
62 Kim, K., An, K., Kwak, S., Ri, H., Ri, K. and Kim, H. (2021), "Free vibration analysis of inversely coupled composite laminated shell structures with general boundary condition", AIP Adv., 11(4), 045309. https://doi.org/10.1063/5.0045379.   DOI
63 Koiter, W.T. (1961), "A consistent first approximation in the general theory of thin elastic shells", Proc. IUTAM Symp. on the Theory of Thin Elastic Shells, North-Holland, Amsterdam.
64 Lee, J. (2017), "Free vibration analysis of joined spherical-cylindrical shells by matched Fourier-Chebyshev expansions", Int. J. Mech. Sci., 122, 53-62. https://doi.org/10.1016/j.ijmecsci.2016.12.025.   DOI
65 Kraus, H. (1967), Thin Elastic Shells, John Wiley & Sons, London.
66 Kumar Jena, S., Chakraverty, S., Malikan, M. and Sedighi, H.M. (2020), "Implementation of Hermite-Ritz method and Navier's technique for vibration of functionally graded porous nanobeam embedded in Winkler-Pasternak elastic foundation using bi-Helmholtz nonlocal elasticity", Mech. Mater. Struct., 15(3), 405-434. https://doi.org/10.2140/jomms.2020.15.405.   DOI
67 Kumar, A., Chakrabarti, A. and Bhargava, P. (2015), "Vibration analysis of laminated composite skew cylindrical shells using higher order shear deformation theory", J. Vib. Control, 21(4), 725-735. https://doi.org/10.1177/1077546313492555.   DOI
68 Leissa, A.W. (1973), "Vibration of shells", NASA SP-288, Nasa Report.
69 Liew, K.M. and Lim, C.W. (1995), "A Ritz vibration analysis of doubly curved rectangular shallow shells using a refined first-order theory", Comput. Meth. Appl. Mech. Eng., 127(1-4), 145-162. https://doi.org/10.1016/0045-7825(95)00837-1.   DOI
70 Liu, B., Xing, Y.F., Qatu, M.S. and Ferreira AJM. (2012), "Exact characteristic equations for free vibrations of thin orthotropic circular cylindrical shells", Compos. Struct., 94(2), 484-493. https://doi.org/10.1016/j.compstruct.2011.08.012.   DOI
71 Lore, S., Sarangan, S. and Singh, B.N. (2021), "Nonlinear free vibration analysis of laminated composite plates and shell panels using nonpolynomial higher-order shear deformation theory", Mech. Adv. Mater. Struct., 1-16. https://doi.org/10.1080/15376494.2021.1959971.   DOI
72 Madenci, E. and Ozutok, A. (2017), "Variational approximate and mixed-finite element solution for static analysis of laminated composite plates", Solid State Phenomena, 267, 35-39. https://doi.org/10.4028/www. scientific.net/SSP.267.35.   DOI
73 Madenci, E. (2019). "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. http://doi.org/10.12989/sem.2019.69.4.427.   DOI
74 Madenci, E. (2021), "Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/scs.2021.39.5.493.   DOI
75 Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.   DOI
76 Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.   DOI
77 Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012), "Bending and free vibration analysis of isotropic and multilayered plates and shells by using a new accurate higher-order shear deformation theory", Compos. Part B: Eng., 43(8), 3348-3360. https://doi.org/10.1016/j.compositesb.2012.01.062.   DOI
78 Mastrogiannakis, I. and Vosniakos, G.C. (2020), "Exploring structural design of the francis hydro-turbine blades using composite materials", Facta Universitatis, Ser.: Mech. Eng., 18(1), 43-55. https://doi.org/10.22190/FUME190609001M.   DOI
79 Miller, C.J., Millavec, W.A. and Kicher, T.P. (1981), "Thermal stress analysis of layered cylindrical shells", AIAA J., 19(4), 523-530. https://doi.org/10.2514/3.7790.   DOI
80 Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl Mech, Trans., 18(1), 31-38. https://doi.org/10.1115/1.4010217.   DOI
81 Moraveji Tabasi, H., Eskandari Jam, J., Malekzadeh Fard, K. and Heydari Beni, M. (2020), "Buckling and free vibration analysis of fiber metal-laminated plates resting on partial elastic foundation", J. Appl. Comput. Mech., 6(1), 37-51. https://doi.org/10.22055/jacm.2019.28156.1489.   DOI
82 Naghdi, P.M. (1972), Theory of Shells and Plates, Handbuch der Physik, Springer-Verlag, Berlin.
83 Nanda, N. and Pradyumna, S. (2011), "Nonlinear dynamic response of laminated shells with imperfections in hygrothermal environments", J. Compos. Mater., 45(20), 2103-2112. https://doi.org/10.1177/0021998311401061.   DOI
84 Noor, A.K. and Burton, W.S. (1990), "Assessment of computational models for multilayered composite shells", Appl. Mech. Rev., 43(4), 67-97. https://doi.org/10.1115/1.3119162.   DOI
85 Norouzi, M., Rahmani, H. and Birjandi, A.K. (2019), "A new exact analysis for anisotropic conductive heat transfer in truncated composite spherical shells", J. Mech., 35(5), 677-691. https://doi.org/10.1017/jmech.2018.54.   DOI
86 Oktem, A.S. and Soares, C.G. (2012), "Analysis of the static response of cross-ply simply supported plates and shells based on a higher-order theory", Mech. Compos. Mater., 48, 65-76. https://doi.org/10.1007/s11029-012-9252-z.   DOI
87 Oktem, A.S., Mantari, J.L. and Soares, C.G. (2012), "Static response of functionally graded plates and doubly-curved shells based on a higher order shear deformation theory", Eur. J. Mech. A Solid., 36, 163-172. https://doi.org/10.1016/j.euromechsol.2012.03.002.   DOI