• Title/Summary/Keyword: Shape of Lattice

Search Result 172, Processing Time 0.02 seconds

Two-dimensional Numerical Simulation of the Rising Bubble Flows Using the Two Phase Lattice Boltzmann Method (2상 격자 볼츠만 방법을 이용한 상승하는 기포 유동 2차원 수치 모사)

  • Ryu, Seung-Yeob;Park, Cheon-Tae;Han, Seung-Yeul;Ko, Sung-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.31-36
    • /
    • 2010
  • Free energy based lattice Boltzmann method (LBM) has been used to simulate the rising bubble flows with large density ratio. LBM with compact discretization is able to reduce the spurious current of the static bubble test and be satisfied with the Laplace law. The terminal rise velocity and shape of the bubbles are dependent on Eotvos number, Morton number and Reynolds number. For single bubble flows, simulations are executed for various Eotvos number, Morton number and Reynolds number, and the results are agreed well with the experiments. For multiple bubbles, the bubble flow characteristics are related by the vortex pattern of the leading bubble. The coalescence of the bubbles are simulated successfully and the subsequent results are presented. The present method is validated for static, dynamic bubble test cases and compared to the numerical, experimental results.

A Comparative Study on the Buckling Characteristics of Single-layer and Double-layer Lattice Dome According to Rise ratio (라이즈비에 따른 단층 및 복층 래티스 돔의 좌굴특성에 관한 비교연구)

  • 권영환;정환목;석창목;박상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.283-289
    • /
    • 1998
  • In the latticed domes which is a set of space frame, buckling is derived if the external force reaches a limitation by the lightness of the material and the minimization of the member section area. these are concerned with a geometric shape, network pattern, the number of layer, and so on. Most of all, the number of layer of the lattice dome is a important factor from the viewpoint of initial and structure design. Therefore this study compared buckling characteristics of single-layer with double-layer latticed domes and investigated the relativity of buckling-stress-ratio and member-density-ratio according to rise ratio to improve that designers could extend the range of .design selection

  • PDF

Diffusion Range and Pool Formation in the Leakage of Liquid Hydrogen Storage Tank Using CFD Tools

  • Kim, Soohyeon;Lee, Minkyung;Kim, Junghwan;Lee, Jaehun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.653-660
    • /
    • 2022
  • In liquid hydrogen storage tanks, tank damage or leakage in the surrounding pipes possess a major risk. Since these tanks store huge amounts of the fluid among all the liquid hydrogen process facilities, there is a high risk of leakage-related accidents. Therefore, in this study, we conducted a risk assessment of liquid hydrogen leakage for a grid-type liquid hydrogen storage tank (lattice-type pressure vessel (LPV): 18 m3) that overcame the low space efficiency of the existing pressure vessel shape. Through a commercially developed three-dimensional computational fluid dynamics program, the geometry of the site, where the liquid hydrogen storage tank will be installed, was obtained and simulations of the leakage scenarios for each situation were performed. From the computational flow analysis results, the pool formation behavior in the event of liquid hydrogen leakage was identified, and the resulting damage range was predicted.

Analysis of Filtration Performance by Brownian Dynamics (Brownian Dynamics 를 이용한 입자 포집 과정 및 여과 성능 해석)

  • Bang, Jong-Geun;Yoon, Yoong-Sup
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.811-819
    • /
    • 2009
  • In the present study, deposition of discrete and small particles on a filter fiber was simulated by stochastic method. Trajectory of each particle was numerically solved by Langevin equation. And Lattice Boltzmann method (LBM) was used to solve flow field around the filter collector for considering complex shape of deposit layer. Interaction between the flow field and the deposit layer was obtained from a converged solution from an inner-loop calculation. Simulation method is properly validated with filtration theory and collection efficiency due to different filtration parameters are examined and discussed. Morphology of deposit layer and its evolution was visualized in terms of the particle size. The particle loaded effect on collection efficiency was also discussed.

Cold Rolling and Heat Treatment Characteristics of TiNi Based Shape Memory Wire (TiNi계 형상기억합금 선재의 냉간압연 및 열처리 특성)

  • Kim, R.H.;Kim, H.S.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.6
    • /
    • pp.251-257
    • /
    • 2017
  • The effect of annealing temperature on the martensitic transformation behavior, tensile deformation chracteristics and shape recovery etc., has been studied in TiNi based shape memory ribbon fabricated by coldrolling of wire. TiNi based shape memory wire (${\phi}=500{\mu}m$) of which structure is intermetallic compound could be cold-rolled without process annealing up to the reduction rate in thickness of 50%, but a few cracks appear in cold-rolled ribbon in the reduction rate in thickness of 65%. The $B2{\rightarrow}R{\rightarrow}B19^{\prime}$ martensitic transformation or $B2{\rightarrow}B19^{\prime}$ martensitic transformation occurs in annealing conditions dissipating lattice defects introduced by coldrolling. However, in case of higher reduction rate or lower annealing temperature, martensitic transformation in cold-rolled and then annealed ribbons does not occur. The maximum shape recovery rate of cold-rolled ribbons with the reduction rate of 35 and 65% could be achieved at annealing temperatures of 250 and $350^{\circ}C$, respectively. The shape recovery rate seems to be related to the stress level of plateau region on stress-strain curve.

Design Method of Spread Footing Reinforced by Geosynthetics (토목섬유를 이용한 확대기초의 설계법 연구)

  • 주재우;이승은;서계원;박종범;최현기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.659-664
    • /
    • 2002
  • New design method about the spread footing was developed using only soil and geosynthetics. This footing will be able to replace the concrete footing at constructing the foundation of small structures. As shown in Fig-3(b), after excavating the ground in semicircular shape, geosynthetics is layed on the semicircular shape of ground and let the soil filled. Geosynthetics of upper side are fixed tightly each other It can be thought to be a kind of great bag with semicircular shape. We performed two kinds of experiments to investigate the deformation and the failure shape of spread footing reinforced by geosynthetics. First, after making model ground with aluminium rods, the lattice point of 1cm ${\times}$ 1cm size of the side of aluminium rods have been painted with various kinds of colors. We have observed the movement of painted rods during loading. Second, we have taken pictures about failure process using B-shutter method. Analysing the behavior of model ground reinforced in a semicircular shape, we could know the reinforced one has much greater and wider plastic area than unreinforced one at failure. Based on the experimental results, new design method was proposed, which has a possibility to apply at the field works.

  • PDF

TAPERED TUBULAR STEEL POLE FOR CABLE HEAD (케이블헤드 설치용 관형지지물)

  • Park, Tae-Dong;Kwon, Hyeog-Mun
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.158-160
    • /
    • 1997
  • WHEN IT IS REQUIRED TO CONNECT OVERHEAD TRANSMISSION LINE WITH UNDERGROUND CABLE, PREVALENT METHOD WAS TO USE CABLE HEAD TYPICALLY MADE OF LATTICE STEEL STRUCTURE. BUT IN VIEW OF THE INCREASING DEMAND THAT STEEL STRUCTURE INSTALLED IN URBAN AREA AND/OR RESIDENTIAL AREA NEED TO MATCH WITH ENVIRONMENTAL SURROUNDINGS, THE UNSHAPELY LARGE-SIZED LATTICE STEEL STRUCTURE CAN NOT BE A PROPER ONE BECAUSE THAT IT IS NOT WELCOMED BY THE RESIDENTS AND ACCORDINGLY ITS INSTALLATION TENDS TO CONFRONT WITH CIVIL PETITION. AS AN ALTERNATIVE METHOD TO SETTLE AFOREMENTIONED UNFAVOURABLE SITUATION WE MAY BE UNDER, WE AR INTENDING TO DEVELOP THE CABLE HEAD MADE OF TAPERED TUBULAR STEEL POLE AND TO PUT IT TO PRACTICAL USE. THE ADVANTAGE WE CAN TAKE OF THE TAPERED TUBULAR STEEL POLE IS THAT IT CAN BE INSTALLED IN A VERY LIMITED SPACE MAXIMIZING THE UTILITY VALUE OF THE LAND AND THAT ITS SMART SHAPE WITH COLOUR COATING IN CONSIDERATION OF AESTHETIC AESTHETIC CAN BE IN GOOD HARMONY WITH THE SURROUNDINGS.

  • PDF

A Last Design Utilizing an Uniform Foot Pressure FFD(UFPFFD) (족압 균등화 FFD(UFPFFD)를 이용한 라스트 설계)

  • Jang Yusung;Lee Heeman;Kim Sikyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.117-121
    • /
    • 2005
  • This paper presents a 3D last design system utilizing an uniform foot pressure FFD method. The proposed uniform foot pressure FFD(UFPFFD) is operated on the rule of foot pressure unbalance analysis and FFD. The deformation factor of the UFPFFD is constructed on the FFD lattice with the foot pressure unbalance analysis on the measured 3D foot bottom shape. In addition, the control points of FFD lattice are decided on the anatomical point and the foot pressure distribution. The 3D last design result obtained from the proposed UFPFFD is saved as a 3D dxf data format. The experimental results demonstrate that the proposed last design guarantees the balanced foot pressure distribution against on the conventional last design method.

A Study on Tensile Strength Dependent on Variation of Output Condition of the X-shape Infill Pattern using FFF-type 3D Printing (융합 필라멘트 제조 방식의 3D 프린팅을 이용한 X자 형상 내부 채움 패턴의 출력 옵션 변화에 따른 인장강도 연구)

  • D. H. Na;H. J. Kim;Y. H. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.123-131
    • /
    • 2024
  • Plastic, the main material of FFF-type 3D printing, exhibits lower strength compared to metal. research aimed at increasing strength is needed for use in various industrial fields. This study analyzed three X-shape infill patterns(grid, lines, zigzag) with similar internal lattice structure. Moreover, tensile test considering weight and printing time was conducted based on the infill line multiplier and infill overlap percentage. The three X-shape infill patterns(grid, lines, zigzag) showed differences in nozzle paths, material usage and printing time. When infill line multiplier increased, there was a proportional increase in tensile strength/weight and tensile strength/printing time. In terms of infill overlap percentage, the grid pattern at 50% and the zigzag and lines patterns at 75% demonstrated the most efficient performance.

Bubbly, Slug, and Annular Two-Phase Flow in Tight-Lattice Subchannels

  • Prasser, Horst-Michael;Bolesch, Christian;Cramer, Kerstin;Ito, Daisuke;Papadopoulos, Petros;Saxena, Abhishek;Zboray, Robert
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.847-858
    • /
    • 2016
  • An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ) and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI), Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1) a vertical channel modeling a pair of neighboring sub-channels; and (2) an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of $16{\times}64$ measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.