DOI QR코드

DOI QR Code

Cold Rolling and Heat Treatment Characteristics of TiNi Based Shape Memory Wire

TiNi계 형상기억합금 선재의 냉간압연 및 열처리 특성

  • Kim, R.H. (Dept. of Advanced Materials, Graduate School, Chosun University) ;
  • Kim, H.S. (Dept. of Metallurgy & Materials Engineering, Chosun University) ;
  • Jang, W.Y. (Dept. of Metallurgy & Materials Engineering, Chosun University)
  • 김록형 (조선대학교 대학원 첨단소재공학과) ;
  • 김희수 (조선대학교 재료공학과) ;
  • 장우양 (조선대학교 재료공학과)
  • Received : 2017.09.08
  • Accepted : 2017.09.25
  • Published : 2017.11.30

Abstract

The effect of annealing temperature on the martensitic transformation behavior, tensile deformation chracteristics and shape recovery etc., has been studied in TiNi based shape memory ribbon fabricated by coldrolling of wire. TiNi based shape memory wire (${\phi}=500{\mu}m$) of which structure is intermetallic compound could be cold-rolled without process annealing up to the reduction rate in thickness of 50%, but a few cracks appear in cold-rolled ribbon in the reduction rate in thickness of 65%. The $B2{\rightarrow}R{\rightarrow}B19^{\prime}$ martensitic transformation or $B2{\rightarrow}B19^{\prime}$ martensitic transformation occurs in annealing conditions dissipating lattice defects introduced by coldrolling. However, in case of higher reduction rate or lower annealing temperature, martensitic transformation in cold-rolled and then annealed ribbons does not occur. The maximum shape recovery rate of cold-rolled ribbons with the reduction rate of 35 and 65% could be achieved at annealing temperatures of 250 and $350^{\circ}C$, respectively. The shape recovery rate seems to be related to the stress level of plateau region on stress-strain curve.

Keywords

References

  1. M. Mertmann and G. Vergani : The Europ. Phys. J. Spec. Topics, 158(1) (2008) 221-230. https://doi.org/10.1140/epjst/e2008-00679-9
  2. K. Otsuka and C. M. Wayman : Shape Memory Materials, Cambridge University Press, Cambridge (1999) 240-266.
  3. M. Nishida, Hua O. Wang, and K. Tanaka : J. of Robotics and Mechatronics, 20 (2008) 793-799. https://doi.org/10.20965/jrm.2008.p0793
  4. Y. Y. Li, X. Y. Yao, S. S. Cao, X. Ma, C. B. Ke and X. P. Zhang : Mater. & Design, 118(15) (2017) 99-106. https://doi.org/10.1016/j.matdes.2017.01.001
  5. James G. Boyd and Dimitri C Lagoudas, Int'l J. of Plasticity, 12(7) (1996) 843-873. https://doi.org/10.1016/S0749-6419(96)00031-9
  6. Z. G. Wei, R. Sandstrorm and S. Miyazaki : J. of Mater. Sci., 33(15) (1998) 3743-3762. https://doi.org/10.1023/A:1004692329247
  7. K. Mehrabi, M. Bruncko, B. J. McKay and A. C. Kneissl : J. of Mater. Engr. and Perform., 18(5-6) (2009) 475-478. https://doi.org/10.1007/s11665-009-9396-8
  8. Tao Zhang and A. Inoue : Mater. Trans., JIM, 39 (1998) 1001-1006. https://doi.org/10.2320/matertrans1989.39.1001
  9. https://en.wikipedia.org/wiki/Flexible_flat_cable.
  10. M. S. Kim : Master Thesis, pp. 29-41, Chosun University, Gwangju (2008).
  11. G. Murasawa, K. Kitamura, S. Yoneyama, S. Miyazaki, K. Miyata, A. Nishioka and T. Koda : Smart Mater. and Struct., 18 (2009) 055003. https://doi.org/10.1088/0964-1726/18/5/055003
  12. R. H. Kim : Master Thesis, pp. 43, Chosun University, Gwangju (2017).
  13. A. S. Paula, K. K. Mahesh, C. M. L. Santos, F. M. B. Fernandes and C. S. C. Viana : Mater. Sci. Forum, 587-588, (2008) 635-639.
  14. A. S. Paula, K. K. Mahesh and F. M. B. Fernandes : The Europ. Phys. J. Spec. Topics, 158(1) (2008) 45-51. https://doi.org/10.1140/epjst/e2008-00652-8
  15. X. B. Wang and B. Verlinden : J. Van Humbeeck, Mater. Sci. & Tech., 30(13) (2014) 1519-1529.
  16. D. Chrobak and D. Str : Scrip. Mater., 52(8) (2005) 757-760. https://doi.org/10.1016/j.scriptamat.2004.12.010
  17. X. W. Wang, B. Verlinden and J. V. Humbeeck : Intermetallics, 62 (2015) 43-49. https://doi.org/10.1016/j.intermet.2015.03.006
  18. K. Otsuka and X. Ren : Progress in Mater. Sci., 50 (2005) 518-522.
  19. K. L. Ng and Q. P. Sun : Mech. of Mater., 38(1-2), (2006) 41-56. https://doi.org/10.1016/j.mechmat.2005.05.008