• Title/Summary/Keyword: Shape memory loop

Search Result 15, Processing Time 0.024 seconds

Posterior Cervical Fixation with a Nitinol Shape Memory Loop for Primary Surgical Stabilization of Atlantoaxial Instability : A Preliminary Report

  • Kim, Duk-Gyu;Eun, Jong-Pil;Park, Jung-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • Objective : To evaluate a new posterior atlantoaxial fixation technique using a nitinol shape memory loop as a simple method that avoids the risk of vertebral artery or nerve injury. Methods : We retrospectively evaluated 14 patients with atlantoaxial instability who had undergone posterior C1-2 fusion using a nitinol shape memory loop. The success of fusion was determined clinically and radiologically. We reviewed patients' neurologic outcomes, neck disability index (NDI), solid bone fusion on cervical spine films, changes in posterior atlantodental interval (PADI), and surgical complications. Results : Solid bone fusion was documented radiologically in all cases, and PADI increased after surgery (p<0.05). All patients remained neurologically intact and showed improvement in NDI score (p<0.05). There were no surgical complications such as neural tissue or vertebral artery injury or instrument failure in the follow-up period. Conclusion : Posterior C1-2 fixation with a nitinol shape memory loop is a simple, less technically demanding method compared to the conventional technique and may avoid the instrument-related complications of posterior C1-2 screw and rod fixation. We introduce this technique as one of the treatment options for atlantoaxial instability.

Radicular Pain due to Subsidence of the Nitinol Shape Memory Loop for Stabilization after Lumbar Decompressive Laminectomy

  • Son, Byung-Chul;Kim, Deog-Ryeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.1
    • /
    • pp.61-64
    • /
    • 2015
  • A number of dynamic stabilization systems have been used to overcome the problems associated with spinal fusion with rigid fixation recently and the demand for an ideal dynamic stabilization system is greater for younger patients with multisegment disc degeneration. Nitinol, a shape memory alloy of nickel and titanium, is flexible at low temperatures and regains its original shape when heated, and the Nitinol shape memory loop (SML) implant has been used as a posterior tension band mostly in decompressive laminectomy cases because the Nitinol implant has various characteristics such as high elasticity and a tensile force, flexibility, and biological compatibility. The reported short-term outcomes of the application of SMLs as posterior column supporters in cervical and lumbar decompressive laminectomies seem to be positive, and complications are minimal except for the rare occurrence of pullout and fracture of the SML. However, there was no report of neurological complications related to neural compression in spite of the use of the loop of SML in the epidural space. The authors report a case of delayed development of radiating pain caused by subsidence of the SML resulting epidural compression.

Posterior Cervical Fixation with Nitinol Shape Memory Loop in the Anterior-Posterior Combined Approach for the Patients with Three Column Injury of the Cervical Spine: Preliminary Report

  • Yu, Dong-Kun;Heo, Dong-Hwa;Cho, Sung-Min;Choi, Jong-Hun;Sheen, Seung-Hun;Cho, Yong-Jun
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.5
    • /
    • pp.303-307
    • /
    • 2008
  • Objective: The authors reviewed clinical and radiological outcomes in patients with three column injury of the cervical spine who had undergone posterior cervical fixation using Nitinol shape memory alloy loop in the anterior-posterior combined approach. Materials: Nine patients were surgically treated with anterior cervical fusion using an iliac bone graft and dynamic plate-screw system, and the posterior cervical fixation using Nitinol shape memory loop ($Davydov^{TM}$) at the same time. A retrospective review was performed. Clinical outcomes were assessed using the Frankel grading method. We reviewed the radiological parameters such as bony fusion rate, height of iliac bone graft strut, graft subsidence, cervical lordotic angle, and instrument related complication. Results: Single-level fusion was performed in five patients, and two-level fusion in four. Solid bone fusion was presented in all cases after surgery. The mean height of graft strut was significantly decreased from $20.46{\pm}9.97mm$ at immediate postoperative state to $18.87{\pm}8.60mm$ at the final follow-up period (p<0.05). The mean cervical lordotic angle decreased from $13.83{\pm}11.84^{\circ}$ to $11.37{\pm}6.03^{\circ}$ at the immediate postoperative state but then, increased to $24.39{\pm}9.83^{\circ}$ at the final follow-up period (p<0.05). There were no instrument related complications. Conclusion: We suggest that the posterior cervical fixation using Nitinol shape memory alloy loop may be a simple and useful method, and be one of treatment options in anterior-posterior combined approach for the patients with the three column injury of the cervical spine.

Preisach Model of Shape Memory Alloy Actuators Using Proportional Relationship of The Major Loop of Hysteresis (히스테리시스 주 루프의 비례관계를 이용한 형상기억합금 엑츄에이터의 Preisach 모델)

  • Choe, Byeong-Jun;Lee, Yeon-Jeong;Choe, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.736-746
    • /
    • 2002
  • There has been a great demand for smart actuators in the field of micro-machines. However, the control accuracy of smart actuators, e.g., a shape memory alloy(SMA) and a piezoceramic actuator, is limited due to the inherent hysteresis nonlinearity. The Preisach hysteresis model has emerged as an appropriate model f3r the behavior of those smart actuators. Yet it is still not easy to construct a practical model of hysteresis using the classical Preisach model. Accordingly, in this paper, we propose a new simple method for modeling of the hysteresis nonlinearity of SMA. Using only the proportional relation of the major loop of hysteresis, the proposed method makes the computation of the Preisach model easy. We prove the efficacy of the proposed model through the comparative the experimentation with the classical Preisach model.

Servo control of an under actuated system using antagonistic shape memory alloy

  • Sunjai Nakshatharan, S.;Dhanalakshmi, K.;Josephine Selvarani Ruth, D.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.643-658
    • /
    • 2014
  • This paper presents the design, modelling and, simulation and experimental results of a shape memory alloy (SMA) actuator based critical motion control application. Dynamic performance of SMA and its ability in replacing servo motor is studied for which the famous open loop unstable balancing ball and beam system direct driven by antagonistic SMA is designed and developed. Simulation uses the mathematical model of ball and beam structure derived from the first principles and model estimated for the SMA actuator by system identification. A PID based cascade control system consisting of two loops is designed and control of ball trajectory for various target positions with settling time as control parameter is verified experimentally. The results demonstrate the performance of SMA for a complicated i.e., under actuated, highly nonlinear unstable system, and thereby it's dynamic behaviour. Control strategies bring out the effectiveness of the actuator and its possible application to much more complex applications such as in aerospace control and robotics.

Improvement of the Performance of Hysteresis Compensation in SMA Actuators by Using Inverse Preisach Model in Closed - Loop Control System

  • Ahn Kyoung-Kwan;Kha Nguyen-Bao
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.634-642
    • /
    • 2006
  • The aim of this paper is to increase the performance of hysteresis compensation for Shape Memory Alloy (SMA) actuators by using inverse Preisach model in closed-loop control system. This is used to reduce hysteresis effects and improve accuracy for the displacement of SMA actuators. Firstly, hysteresis is identified by numerical Preisach model implementation. The geometrical interpretation from first order transition curves is used for hysteresis modeling. Secondly, the inverse Preisach model is formulated and incorporated in closed-loop PID control system in order to obtain desired current-to-displacement relationship with hysteresis reducing. The experimental results for hysteresis compensation by using this method are also shown in this paper.

Influence of Heat Treatment Conditions on Temperature Control Parameter ((t1) for Shape Memory Alloy (SMA) Actuator in Nucleoplasty (수핵성형술용 형상기억합금(SMA) 액추에이터 와이어의 열처리 조건 변화가 온도제어 파라미터(t1)에 미치는 영향)

  • Oh, Dong-Joon;Kim, Cheol-Woong;Yang, Young-Gyu;Kim, Tae-Young;Kim, Jay-Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.619-628
    • /
    • 2010
  • Shape Memory Alloy (SMA) has recently received attention in developing implantable surgical equipments and it is expected to lead the future medical device market by adequately imitating surgeons' flexible and delicate hand movement. However, SMA actuators have not been used widely because of their nonlinear behavior called hysteresis, which makes their control difficult. Hence, we propose a parameter, $t_1$, which is necessary for temperature control, by analyzing the open-loop step response between current and temperature and by comparing it with the values of linear differential equations. $t_1$ is a pole of the transfer function in the invariant linear model in which the input and output are current and temperature, respectively; hence, $t_1$ is found to be related to the state variable used for temperature control. When considering the parameter under heat treatment conditions, $T_{max}$ was found to assume the lowest value, and $t_1$ was irrelevant to the heat treatment.

Real-time SMA control for wire frame-based 3D shape display (와이어프레임 기반의 3차원 형상제시기의 실시간 SMA 제어)

  • Kim Y.M.;Chu Y.J.;Song J.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.295-296
    • /
    • 2006
  • We developed wire frame drive unit based on SMA for the 3D Shape display. Our basic concept is wire frame combination connected with a chain form which can create various shapes and it compared with pin array mechanism which is not able to display mushroom shape. It imitates antagonist mechanism of human musculoskeletal system. we create similar motion using repair-relaxation mechanism and locking mechanism by SMA. Therefore, in this paper, we propose SMA control solution for actuating repair-relaxation mechanism and locking mechanism. In our control system. we use optical sensor and quantitative angle between wire frames for closed loop control. And we supply amplified current for SMA by circuit composed of transistor and apply PWM signal to circuit for efficient control. So, wire frame drive unit enable diversity angle control based on sensor data. And then combination of wire frame drive units will create various objects.

  • PDF

Degradation from Polishing Damage in Ferroelectric Characteristics of BLT Capacitor Fabricated by Chemical Mechanical Polishing Process (화학적기계적연마 공정으로 제조한 BLT Capacitor의 Polishing Damage에 의한 강유전 특성 열화)

  • Na, Han-Yong;Park, Ju-Sun;Jung, Pan-Gum;Ko, Pil-Ju;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.236-236
    • /
    • 2008
  • (Bi,La)$Ti_3O_{12}$(BLT) thin film is one of the most attractive materials for ferroelectric random access memory (FRAM) applications due to its some excellent properties such as high fatigue endurance, low processing temperature, and large remanent polarization [1-2]. The authors firstly investigated and reported the damascene process of chemical mechanical polishing (CMP) for BLT thin film capacitor on behalf of plasma etching process for fabrication of FRAM [3]. CMP process could prepare the BLT capacitors with the superior process efficiency to the plasma etching process without the well-known problems such as plasma damages and sloped sidewall, which was enough to apply to the fabrication of FRAM [2]. BLT-CMP characteristics showed the typical oxide-CMP characteristics which were related in both pressure and velocity according to Preston's equation and Hernandez's power law [2-4]. Good surface roughness was also obtained for the densification of multilevel memory structure by CMP process [3]. The well prepared BLT capacitors fabricated by CMP process should have the sufficient ferroelectric properties for FRAM; therefore, in this study the electrical properties of the BLT capacitor fabricated by CMP process were analyzed with the process parameters. Especially, the effects of CMP pressure, which had mainly affected the removal rate of BLT thin films [2], on the electrical properties were investigated. In order to check the influences of the pressure in eMP process on the ferroelectric properties of BLT thin films, the electrical test of the BLT capacitors was performed. The polarization-voltage (P-V) characteristics show a decreased the remanent polarization (Pr) value when CMP process was performed with the high pressure. The shape of the hysteresis loop is close to typical loop of BLT thin films in case of the specimen after CMP process with the pressures of 4.9 kPa; however, the shape of the hysteresis loop is not saturated due to high leakage current caused by structural and/or chemical damages in case of the specimen after CMP process with the pressures of 29.4 kPa. The leakage current density obtained with positive bias is one order lower than that with negative bias in case of 29.4 kPa, which was one or two order higher than in case of 4.9 kPa. The high pressure condition was not suitable for the damascene process of BLT thin films due to the defects in electrical properties although the better efficiency of process. by higher removal rate of BLT thin films was obtained with the high pressure of 29.4 kPa in the previous study [2].

  • PDF

Hysterersis Compensation in SMA Actuators Through Numerical Inverse Preisach Model Implementation

  • Kha, Nguyen-Bao;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2048-2053
    • /
    • 2005
  • The aim of this paper is to compensate hysteresis phenomena in Shape Memory Alloy (SMA) actuators by using numerical inverse Preisach model. This is used to design a controller that correct hysteresis effects and improve accuracy for the displacement of SMA actuators. Firstly, hysteresis is identified by numerical Preisach model implementation. The geometrical interpretation from first order transition curves is used for hysteresis modeling. Secondly, the inverse Preisach model is formulated and incorporated in open-loop control system in order to obtain desired input-output relationship with hysteresis reducing. The experimental results for hysteresis compensation by using this method are also shown in this paper.

  • PDF