• Title/Summary/Keyword: Shape coding

Search Result 113, Processing Time 0.02 seconds

Performance Analysis and improvement of Extension-interpolation (EI)/2D-DCT for Coding irregular Shaped object (불규칙 모양 물제의 부호화를 위한 확장-보간/2D-DCT의 성능 분석 및 개성 방안)

  • 조순제;강현수;윤병주;김성대;구본호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3B
    • /
    • pp.541-548
    • /
    • 2000
  • In the MPEG-4 standardization phase, many methods for coding the irregular shaped VOP (video object Plane) have been researched. Texture coding is one of interesting research items in the MPEG-4. There are the Low pass extrapolation (LPE) padding, the shape adaptive DCT (SA-DCT), and the Extension-Interpolation (EI)/2D-DCT proposed in [1] as texture coding methods. the EI/2D-DCT is the method extending and interpolating luminance values from and Arbitrarily Shaped (AS) image segment into an 8 x 8 block and transforming the extended and interpolated luminance values by the 8x8 DCT. although the EI/2D-DCT and the SA-DCT work well in coding the As image segments. they are degraded since they use one-dimensional (1-D) methods such as the 1D-EI and the 1D-DCT in the two-dimensional (2-D) space. in this paper, we analyze the performance of the EI/2D-DCTand propose a new non-symmetric sig-sag scanning method, which non-symmetrically scans the quantized coefficients in the DCT domain to improve the EI/2D-DCT.

  • PDF

Accessory auricle: Classification according to location, protrusion pattern and body shape

  • Hwang, Jungil;Cho, Jaeyoung;Burm, Jin Sik
    • Archives of Plastic Surgery
    • /
    • v.45 no.5
    • /
    • pp.411-417
    • /
    • 2018
  • Background Accessory auricles (AAs) are common congenital anomalies. We present a new classification according to location and shape, and propose a system for coding the classifications. Methods This study was conducted by reviewing the records of 502 patients who underwent surgery for AA. AAs were classified into three anatomical types: intraauricular, preauricular, and buccal. Intraauricular AAs were divided into three subtypes: intracrural, intratragal, and intralobal. Preauricular AAs were divided into five subtypes: precrural, superior pretragal, middle pretragal, inferior pretragal, and prelobal. Buccal AAs were divided into two subtypes: anterior buccal and posterior buccal. AAs were also classified according to their protrusion pattern above the surrounding surface: pedunculated, sessile, areolar, remnant, and depressed. Pedunculated and sessile AAs were subclassified as spherical, ovoid, lobed, and nodular, according to their body shape. Cartilage root presence and family history of AA were reviewed. A coding system for these classifications was also proposed. Results The total number of AAs in the 502 patients was 1,003. Among the locations, the superior pretragal subtype (27.6%) was the most common. Among the protrusion patterns and shapes, pedunculated ovoid AAs were the most common in the preauricular (27.8%) and buccal areas (28.0%), and sessile lobed AAs were the most common in the intraauricular area (48.7%). The proportion of AAs with a cartilage root was 78.4%, and 11% of patients had a family history. The most common type of preauricular AA was the superior pretragal pedunculated ovoid AA (13.2%) with a cartilage root. Conclusions This new system will serve as a guideline for classifying and coding AAs.

Development of Morphological Pattern Recognition System - Morphological Shape Decomposition using Shape Function (형태론적 패턴인식 시스템의 개발 - 형상함수를 이용한 형태론적 형상분해)

  • Jong Ho Choi
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.8
    • /
    • pp.1127-1136
    • /
    • 1995
  • In this paper, a morphological shape decomposition method is proposed for the purpose of pattern recognition and image compression. In the method, a structuring element that geometrical characteristics is more similar to the shape function is preselected. The shape is decomposed into the primitive elements corresponding to the structuring element. A gray scale image also is transformed into 8 bit plane images for the hierarchical reconstruction required in image communication systems. The shape in each bitplane is decomposed to the proposed method. Through the experiment. it is proved that the description error is reduced and the coding efficiency is improved.

  • PDF

Modified Generic Mode Coding Scheme for Enhanced Sound Quality of G.718 SWB (G.718 초광대역 코덱의 음질 향상을 위한 개선된 Generic Mode Coding 방법)

  • Cho, Keun-Seok;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.4 no.3
    • /
    • pp.119-125
    • /
    • 2012
  • This paper describes a new algorithm for encoding spectral shape and envelope in the generic mode of G.718 super-wide band (SWB). In the G.718 SWB coder, generic mode coding and sinusoidal enhancement are used for the quantization of modified discrete cosine transform (MDCT)-based parameters in the high frequency band. In the generic mode, the high frequency band is divided into sub-bands and for every sub-band the most similar match with the selected similarity criteria is searched from the coded and envelope normalized wideband content. In order to improve the quantization scheme in high frequency region of speech/audio signals, the modified generic mode by the improvement of the generic mode in G.718 SWB is proposed. In the proposed generic mode, perceptual vector quantization of spectral envelopes and the resolution increase for spectral copy are used. The performance of the proposed algorithm is evaluated in terms of objective quality. Experimental results show that the proposed algorithm increases the quality of sounds significantly.

A New Vertex Coding Scheme Using The Center of the Gravity of a Triangle (삼각형의 무게 중심을 이용한 새로운 다각 근사화 장점 부호화 기법)

  • 윤병주;강현수;조순제;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1174-1182
    • /
    • 1999
  • Recently the shape information of the visual object in the scene is more important, as the completion of the MPEG-4 standard and the progress of the MPEG-7 standard. This paper represents the study of effective coding method of vertices that are used in the polygonal approximation to represent the feature of visual object. In the proposed method, we make the centers of gravity of triangles that are made using the vertices of polygonal approximation and encode them sequentially We can get a coding gain because the centers of the gravity of triangles have narrower dynamic ranges.

  • PDF

Efficient CT Image Segmentation Algorithm Using both Spatial and Temporal Information

  • Lee, Sang-Bock;Lee, Jun-Haeng;Lee, Samyol
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.505-510
    • /
    • 2004
  • This paper suggests a new CT-image segmentation algorithm. This algorithm uses morphological filters and the watershed algorithms. The proposed CT-image segmentation algorithm consists of six parts: preprocessing, image simplification, feature extraction, decision making, region merging, and postprocessing. By combining spatial and temporal information, we can get more accurate segmentation results. The simulation results illustrate not only the segmentation results of the conventional scheme but also the results of the proposed scheme; this comparison illustrates the efficacy of the proposed technique. Furthermore, we compare the various medical images of the structuring elements. Indeed, to illustrate the improvement of coding efficiency in postprocessing, we use differential chain coding for the shape coding of results.

  • PDF

Object Boundary Block Coding Using Block Merging Method (블록 병합 기법을 이용한 객체 경계 부분 부호화)

  • 이희습;김정식;김정우;이근영
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.577-580
    • /
    • 1999
  • Padding is a technique that enables applying conventional discrete cosine transform to encode boundary blocks of arbitrarily shaped objects by assigning imaginary values to the pixels that are not included in the object. Padding prevents the increase of high frequency DCT coefficients. However, in some boundary blocks, too many padded pixels are coded due to a small portion of object pixels. To reduce the number of padded pixels and to improve coding efficiency, we propose a block merging method for texture coding. The proposed mothed searches the shape information of boundary blocks and excludes the 4$\times$4 pixels of 8$\times$8 blocks if all the 4$\times$4 pixels are in the background region, and merges the remained 4$\times$4 pixels into new 8$\times$8 blocks. Experimental results show that our proposed method yields a rate-distortion gain about 0.5~1.6㏈ compared to conventional padding method, LPE

  • PDF

Bit-plane based Lossless Depth Map Coding Method (비트평면 기반 무손실 깊이정보 맵 부호화 방법)

  • Kim, Kyung-Yong;Park, Gwang-Hoon;Suh, Doug-Young
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.551-560
    • /
    • 2009
  • This paper proposes a method for efficient lossless depth map coding for MPEG 3D-Video coding. In general, the conventional video coding method such as H.264 has been used for depth map coding. However, the conventional video coding methods do not consider the image characteristics of the depth map. Therefore, as a lossless depth map coding method, this paper proposes a bit-plane based lossless depth mar coding method by using the MPEG-4 Part 2 shape coding scheme. Simulation results show that the proposed method achieves the compression ratios of 28.91:1. In intra-only coding, proposed method reduces the bitrate by 24.84% in comparison with the JPEG-LS scheme, by 39.35% in comparison with the JPEG-2000 scheme, by 30.30% in comparison with the H.264(CAVLC mode) scheme, and by 16.65% in comparison with the H.264(CABAC mode) scheme. In addition, in intra and inter coding the proposed method reduces the bitrate by 36.22% in comparison with the H.264(CAVLC mode) scheme, and by 23.71% in comparison with the 0.264(CABAC mode) scheme.

Implementation of JBIG2 CODEC with Effective Document Segmentation (문서의 효율적 영역 분할과 JBIG2 CODEC의 구현)

  • 백옥규;김현민;고형화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.575-583
    • /
    • 2002
  • JBIG2 is an International Standard fur compression of Bi-level images and documents. JBIG2 supports three encoding modes for high compression according to region features of documents. One of which is generic region coding for bitmap coding. The basic bitmap coder is either MMR or arithmetic coding. Pattern matching coding method is used for text region, and halftone pattern coding is used for halftone region. In this paper, a document is segmented into line-art, halftone and text region for JBIG2 encoding and JBIG2 CODEC is implemented. For efficient region segmentation of documents, region segmentation method using wavelet coefficient is applied with existing boundary extraction technique. In case of facsimile test image(IEEE-167a), there is improvement in compression ratio of about 2% and enhancement of subjective quality. Also, we propose arbitrary shape halftone region coding, which improves subjective quality in talc neighboring text of halftone region.

Depth Map Coding Using Histogram-Based Segmentation and Depth Range Updating

  • Lin, Chunyu;Zhao, Yao;Xiao, Jimin;Tillo, Tammam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1121-1139
    • /
    • 2015
  • In texture-plus-depth format, depth map compression is an important task. Different from normal texture images, depth maps have less texture information, while contain many homogeneous regions separated by sharp edges. This feature will be employed to form an efficient depth map coding scheme in this paper. Firstly, the histogram of the depth map will be analyzed to find an appropriate threshold that segments the depth map into the foreground and background regions, allowing the edge between these two kinds of regions to be obtained. Secondly, the two regions will be encoded through rate distortion optimization with a shape adaptive wavelet transform, while the edges are lossless encoded with JBIG2. Finally, a depth-updating algorithm based on the threshold and the depth range is applied to enhance the quality of the decoded depth maps. Experimental results demonstrate the effective performance on both the depth map quality and the synthesized view quality.