• Title/Summary/Keyword: Shape and Texture

Search Result 534, Processing Time 0.038 seconds

A Synthetic Method for Generating Texture Patterns Similar to a Selected Original Texture Image

  • Shinji, Ohyama;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.35.5-35
    • /
    • 2001
  • The purpose of the study is to develop a synthetic method for generating arbitrary number of not the same but similar texture images. The method includes processes to extract basic shape elements from texture images originating in actual objects, to select them to reappear the image features and to arrange them in a image plane. The authors have already proposed the shape-pass type filter bank assuming that the sensual impression mainly depends on minute shapes existing in the texture images. By use of nine basic shape elements, namely black/white-roof, black/white-line, black/white-snake, black/white-pepper, and cliff, natural texture images originating in actual objects have been characterized by feature vectors in a nine dimensional space. To generate arbitrary number of similar texture images, minute shape pieces ...

  • PDF

Feasibility in Grading the Burley Type Dried Tobacco Leaf Using Computer Vision (컴퓨터 시각을 이용한 버얼리종 건조 잎 담배의 등급판별 가능성)

  • 조한근;백국현
    • Journal of Biosystems Engineering
    • /
    • v.22 no.1
    • /
    • pp.30-40
    • /
    • 1997
  • A computer vision system was built to automatically grade the leaf tobacco. A color image processing algorithm was developed to extract shape, color and texture features. An improved back propagation algorithm in an artificial neural network was applied to grade the Burley type dried leaf tobacco. The success rate of grading in three-grade classification(1, 3, 5) was higher than the rate of grading in six-grade classification(1, 2, 3, 4, 5, off), on the average success rate of both the twenty-five local pixel-set and the sixteen local pixel-set. And, the average grading success rate using both shape and color features was higher than the rate using shape, color and texture features. Thus, the texture feature obtained by the spatial gray level dependence method was found not to be important in grading leaf tobacco. Grading according to the shape, color and texture features obtained by machine vision system seemed to be inadequate for replacing manual grading of Burely type dried leaf tobacco.

  • PDF

Content-based image retrieval using a fusion of global and local features

  • Hee Hyung Bu;Nam Chul Kim;Sung Ho Kim
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.505-517
    • /
    • 2023
  • Color, texture, and shape act as important information for images in human recognition. For content-based image retrieval, many studies have combined color, texture, and shape features to improve the retrieval performance. However, there have not been many powerful methods for combining all color, texture, and shape features. This study proposes a content-based image retrieval method that uses the combined local and global features of color, texture, and shape. The color features are extracted from the color autocorrelogram; the texture features are extracted from the magnitude of a complete local binary pattern and the Gabor local correlation revealing local image characteristics; and the shape features are extracted from singular value decomposition that reflects global image characteristics. In this work, an experiment is performed to compare the proposed method with those that use our partial features and some existing techniques. The results show an average precision that is 19.60% higher than those of existing methods and 9.09% higher than those of recent ones. In conclusion, our proposed method is superior over other methods in terms of retrieval performance.

A Study on Change of Texture During Thermal Cycling in Cu-Zn-AI Shape Memory Alloy (Cu-Zn-AI 형상기억 합금의 열사이클에 따른 집합조직의 변화에 관한 연구)

  • Hong, D.W.;Park, Y.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.3
    • /
    • pp.179-185
    • /
    • 1992
  • The shape memory effect results from the martensite transfomation of each individual grain. Thus it is necessary to study the texture and its variation. In this study the change of texture during thermal cycling and it's effect on shape memory ability are investigated. The major component of the rolling texture in the parent phase is identified (001) [110], and minor components are (112) [110], (111) [112], {hkl}<100> fiber texture is developed at $45^{\circ}$ from rolling direction. In the case of martensite phase, it is estimated that the major component is (011) [100] and the minor components are (105) [501], (010) [101] and (100) [001]. According to thermal cycling. severity of texture, especially (001) [110] component in parent phase and (011) [100] component in martensite phase are increased. The shape memory ability is increased with increase of thermal cycles and also increased as the direction of specimen approach to $45^{\circ}$ from rolling direction. After first thermal cycling the temperature of transformation can be define clearly and Ms and As are raised by thermal cycling.

  • PDF

Development of Digital Surface Model and Feature Extraction by Integrating Laser Scanner and CCD sensor

  • Nagai, Masahiko;Shibasaki, Ryosuke;Zhao, Huijing;Manandhar, Dinesh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.859-861
    • /
    • 2003
  • In order to present a space in details, it is indispensable to acquire 3D shape and texture simultaneously from the same platform. 3D shape is acquired by Laser Scanner as point cloud data, and texture is acquired by CCD sensor. Positioning data is acquired by IMU (Inertial Measurement Unit). All the sensors and equipments are assembled on a hand-trolley. In this research, a method of integrating the 3D shape and texture for automated construction of Digital Surface Model is developed. This Digital Surface Model is applied for efficient feature extraction. More detailed extraction is possible , because 3D Digital Surface Model has both 3D shape and texture information.

  • PDF

Color Image Coding Based on Shape-Adaptive All Phase Biorthogonal Transform

  • Wang, Xiaoyan;Wang, Chengyou;Zhou, Xiao;Yang, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.114-127
    • /
    • 2017
  • This paper proposes a color image coding algorithm based on shape-adaptive all phase biorthogonal transform (SA-APBT). This algorithm is implemented through four procedures: color space conversion, image segmentation, shape coding, and texture coding. Region-of-interest (ROI) and background area are obtained by image segmentation. Shape coding uses chain code. The texture coding of the ROI is prior to the background area. SA-APBT and uniform quantization are adopted in texture coding. Compared with the color image coding algorithm based on shape-adaptive discrete cosine transform (SA-DCT) at the same bit rates, experimental results on test color images reveal that the objective quality and subjective effects of the reconstructed images using the proposed algorithm are better, especially at low bit rates. Moreover, the complexity of the proposed algorithm is reduced because of uniform quantization.

Implementation of the System Converting Image into Music Signals based on Intentional Synesthesia (의도적인 공감각 기반 영상-음악 변환 시스템 구현)

  • Bae, Myung-Jin;Kim, Sung-Ill
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.254-259
    • /
    • 2020
  • This paper is the implementation of the conversion system from image to music based on intentional synesthesia. The input image based on color, texture, and shape was converted into melodies, harmonies and rhythms of music, respectively. Depending on the histogram of colors, the melody can be selected and obtained probabilistically to form the melody. The texture in the image expressed harmony and minor key with 7 characteristics of GLCM, a statistical texture feature extraction method. Finally, the shape of the image was extracted from the edge image, and using Hough Transform, a frequency component analysis, the line components were detected to produce music by selecting the rhythm according to the distribution of angles.

Effect of the Texture Shape Aspect Ratio on Friction Reduction in a Hydrodynamic Lubrication Regime (유체윤활영역에서 패턴의 모양비율에 따른 마찰 저감효과)

  • Lee, Daehun;Park, Sang-Shin;Ko, Tae Jo;Shim, Jaesool
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • Friction occurs when surfaces that are in contact move relatively between solid surfaces, fluid layers, and materials slide against one another. This friction force causes wear on the contact surface, generates unwanted heat and leads to performance degradation. Thus, much research has been performed to avoid friction reduction. Among these studies, a textured surface that has micro patterns on the surface has drawn attention for its ability to reduce friction. A mathematical model is developed in this study to examine friction reduction due to the texture of a surface. Numerical simulations are carried out with respect to various factors such as the shape aspect ratio and texture depth of a diamond-shaped texture in the hydrodynamic lubrication regime. As a result, a shape aspect ratio of 1 is best for friction reduction.

Performance Evaluations for Leaf Classification Using Combined Features of Shape and Texture (형태와 텍스쳐 특징을 조합한 나뭇잎 분류 시스템의 성능 평가)

  • Kim, Seon-Jong;Kim, Dong-Pil
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • There are many trees in a roadside, parks or facilities for landscape. Although we are easily seeing a tree in around, it would be difficult to classify it and to get some information about it, such as its name, species and surroundings of the tree. To find them, you have to find the illustrated books for plants or search for them on internet. The important components of a tree are leaf, flower, bark, and so on. Generally we can classify the tree by its leaves. A leaf has the inherited features of the shape, vein, and so on. The shape is important role to decide what the tree is. And texture included in vein is also efficient feature to classify them. This paper evaluates the performance of a leaf classification system using both shape and texture features. We use Fourier descriptors for shape features, and both gray-level co-occurrence matrices and wavelets for texture features, and used combinations of such features for evaluation of images from the Flavia dataset. We compared the recognition rates and the precision-recall performances of these features. Various experiments showed that a combination of shape and texture gave better results for performance. The best came from the case of a combination of features of shape and texture with a flipped contour for a Fourier descriptor.

Brick Path Recognition Using Image Shape Pattern and Texture Feature (영상의 형태 패턴과 텍스처 특징을 이용한 보도블록의 인식방법)

  • Woo, Byung-Seok;Yang, Sung-Min;Jo, Kang-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.472-484
    • /
    • 2012
  • Raised or plain block is widely used for the pedestrian's safe passage. The insincere construction, insufficient maintenance and obstacle overlaid on the pavement cause pedestrian's accidents. This paper proposes a method to detect brick path by analyzing the shape pattern and texture feature of brick located in visible distance for a safe passage. A brick appears to a regular type because of its specific shape which repeats with its sized gap and its type varies according to the surrounding environment or use. This paper shows a method which extracts the shape pattern by analyzing single surface polygon and its frequency appearing in road area. The shape pattern is used to detect similar shape regions. Some regions are not detected because extraneous substances or chopped bricks distort the original shape. This problem can be solved by analyzing the texture feature vector. The analyzed vector of the previously detected regions yields the Gaussian distribution. This value in each undetected region is computed and checked whether it's satisfied with Gaussian distribution or not. The satisfied region is detected as the brick path. The experiment was performed with the various type's bricks to recognize so that the results showed as accurate as 95.9% in average.