• Title/Summary/Keyword: Shape Synthesis

Search Result 518, Processing Time 0.028 seconds

Functional Polymers with Controlled Molecular Architecture: Design, Synthesis and Applications

  • Frechet Jean M.J.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.1-2
    • /
    • 2006
  • Polymer architecture plays a great role in determining the properties of functional polymers. This lecture will explore the design and the synthesis of polymers with controlled architecture and functionality. Especially featured will be star and dendritic architectures where the functional group placement and the molecular shape can be controlled. This will be followed by examples of applications illustrated with a few model systems of functional polymers designed for use in areas such as organic electronics, catalysis, surface patterning, separation and molecular recognition, and polymer therapeutics.

  • PDF

The Revolution of Diamond Synthesis Technology

  • Sung, James-C.;Hu, Shao-Chung;Lin, I-Chiao;Tsai, Chia-Cheng
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1136-1137
    • /
    • 2006
  • The ultrahigh pressure process for synthesizing diamond grits is due to make a quantum leap: the raw materials will incorporate diamond seeds with a predetermined pattern. The result is doubling the diamond yield with a narrower size distribution. Moreover, the shape of diamond crystals can be precisely tuned. For example, diamond octahedra or diamond cubes, that are not available today, can be mass-produced. The new technology is now being implemented worldwide so the future diamond grits will have improved quality at reduced prices.

  • PDF

Synthesis of Hollandite Powders as a Nuclear Waste Ceramic Forms by a Solution Combustion Synthesis (연소합성법을 이용한 방사성폐기물 고화체 Hollandite 분말 합성)

  • Choong-Hwan Jung;Sooji Jung
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.385-392
    • /
    • 2023
  • A solution combustion process for the synthesis of hollandite (BaAl2Ti6O16) powders is described. SYNROC (synthetic rock) consists of four main titanate phases: perovskite, zirconolite, hollandite and rutile. Hollandite is one of the crystalline host matrices used for the disposal of high-level radioactive wastes because it immobilizes Sr and Lns elements by forming solid solutions. The solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between a nitrate and organic fuel, generates an exothermic reaction and that heat converts the precursors into their corresponding oxide products in air. The process has high energy efficiency, fast heating rates, short reaction times, and high compositional homogeneity. To confirm the combustion synthesis reaction, FT-IR analysis was conducted using glycine with a carboxyl group and an amine as fuel to observe its bonding with metal element in the nitrate. TG-DTA, X-ray diffraction analysis, SEM and EDS were performed to confirm the formed phases and morphology. Powders with an uncontrolled shape were obtained through a general oxide-route process, confirming hollandite powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using these methods.

Synthesis of Precipitated Calcium carbonate in Ca(OH)2-CO2-H2O System by the Continuous Drop Method of Ca(OH)2 Slurry

  • Ahn, Ji-Whan;Lee, Jae-Sung;Joo, Sung-Min;Kim, Hyung-Seok;Kim, Jong-Kuk;Han, Choon;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.327-335
    • /
    • 2002
  • Experiments were conducted to investigate the synthesis characteristics of Precipitated Calcium Carbonate(for short PCC) in Ca(OH)$_2-CO_2-H_2O$ system by the continuous drop method of Ca(OH)$_2$ slurry into the solution containing $CO_2$(aq). When the flow rate of $CO_2$(g) increases and the concentration of Ca(OH)$_2$ slurry become low, the absorption rate of $CO_2$(g) become faster than the dissolution rate of Ca(OH)$_2$. Consequently, the growth of the calcite crystal plane is facilitated resulting in synthesis of $1.0{\mu}m$ of rhombohedral calcite. On the other hand, when the flow rate of $CO_2$(g) decreases and the concentration of Ca(OH)$_2-CO_2-H_2O$ slurry become high, new nuclei is created along with the crystal growth resulting in synthesis of $0.1{\mu}m$ of prismatic calcite. Maintaining 1.0wt% of Ca(OH)$_2-CO_2-H_2O$ slurry, 120 drops/min of drop rate and $25^{circ}C$ of temperature, the shape of PCC shows colloidal and spherical agglomerate at 100 mL/min of the flow rate of $CO_2$(g); the mixture of rhombohedral and plate-shaped calcite, at 200∼500 mL/min. Therefore, as the flow rate of $CO_2$(g) increases, the shape of PCC changes from colloidal and rhombohedral calcite to plate-shaped calcite. Maintaining 500 mL/min of the flow rate of $CO_2$(g), 120 drops/min of the drop rate of Ca(OH)$_2$ slurry, and $25^{circ}C$ of temperature, the shape of PCC shows the plate-shaped calcite at 1.0∼3.0 wt% of Ca(OH)$_2$ slurry; the hexagonal plate-shape calcite of the thickness of $0.1{\mu}m$ and the width of $1.0{\mu}m$, at 4.0 wt%.

Fabrication of Various Carbides with Fibrous and Particulate Shapes by Self-Propagating High Temperature Synthesis Method (자전연소합성법에 의한 여러 가지 섬유상 및 입상 탄화물의 제조)

  • Bang, Hwan-Cheol;Yun, Jon-Do
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.343-349
    • /
    • 2000
  • Fabrication of various carbide fibers from carbon fibers and elementary powders of Ti, Zr, Nb, Zi, W, B, and Mo by self-propagating high temperature synthesis was attempted. It was found the almost pure phase of TiC, ZrC, NbC, SiC, $B_4$C, and $Mo_2$C carbides were successfully produced. The three types of morphologies were ob-served, TiC, ZrC, NbC, and $B_4$C had a hollow-type fibrous shape. SiC had fiber shape consisting of smaller particles and fine whiskers. WC and $Mo_2$C had non-fibrous shapes. The reason for the different morphologies was explained. The formation mechanism of hollow fibers was suggested.

  • PDF

Steering Beam Pattern Synthesis of Line Array SONAR using Modified Two Step Least Squares Method (개선된 2단 최소자승법을 이용한 선배열 소나의 조향 빔 형성)

  • Park, Kyung-Min;Lee, Seok-Jin;Chung, Suk-Moon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.228-236
    • /
    • 2014
  • Towed array SONAR is deformed because it operates in fluid such as an ocean. It especially undergoes significant change in shape as a towing vessel takes a turn. In this case, beam pattern synthesis of the line array is limited, resulting in degradation in quality such as signal-to-noise ratio. This paper presents a modified two-step least squares algorithm based on the two-step least squares method. The shape of the sea-operated line array formation with the towing vessel changing course(angle) was modeled and the algorithm was subsequently applied. While changing course and location of the main lobe in beam pattern was altered, signal-to-noise ratio of steering beam pattern synthesis was analyzed by algorithm (proposed and others). As a result, the proposed algorithm presented improvement in performance by 2dB compared to other algorithms while forming relatively constant beam pattern.

An Isometric Shape Interpolation Method on Mesh Models (메쉬 모델에 대한 아이소메트릭 형상 보간 방법)

  • Baek, Seung-Yeob;Lee, Kunwoo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.119-128
    • /
    • 2014
  • Computing the natural-looking interpolation of different shapes is a fundamental problem of computer graphics. It is proved by some researchers that such an interpolation can be achieved by pursuing the isometry. In this paper, a novel coordinate system that is invariant under isometries is defined. The coordinate system can easily be converted from the global vertex coordinates. Furthermore, the global coordinates can be efficiently recovered from the new coordinates by simply solving two sparse least-squares problems. Since the proposed coordinate system is invariant under isometries, then transformations such as global rigid trans-formations, articulated posture deformations, or any other isometric deformations, do not change the coordinate values. Therefore, shape interpolation can be done in this framework without being affected by the distortions caused by the isometry.

Medicinal aspects of Murraya koenigii mediated silver nanoparticles

  • Mumtaz, Sumaira;Nadeem, Raziya;Sarfraz, Raja A.;Shahid, Muhammad
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.657-665
    • /
    • 2021
  • The present work aimed to explore green approach via aqueous leaves extract of Murraya koenigii (ALEMk) for the synthesis of silver nanoparticles (AgNPsMk) in single step. The synthesis process was visualized with a color change and monitored by employing UV/Visible spectroscopy and a clear peak attained at 420 nm confirming the synthesis of AgNPsMk. The possible functional groups present in the extract which participated in the synthesis of AgNPsMk were identified with the help of FTIR spectroscopy. Further characterization using TEM images revealed the spherical shape of AgNPsMk with average particle size of 20 nm displaying well dispersion throughout the solution. Pronounced antioxidant activities of AgNPsMk at increased concentrations observed which evidencing strong radical scavenging ability. Moreover, AgNPsMk exhibited strong antibacterial behavior when tested against bacterial strains of Escherichia coli and Bacillus subtilis. Moving ahead, in vitro cytotoxicity work revealed potent cell viability loss appearing in AU565 and HeLa cancer cell lines on exposure to AgNPsMk at increased concentration. Finally, in vivo assessment carried out inside male Wistar rats indicated non toxic effect on examined liver tissues besides biochemical analysis including bilirubin, alkaline phosphtase (ALP) and serum glutamate pyruvate transaminase (SGPT) which found within the normal range when compared with control. The prior research work profoundly apprises the potential of green synthesized AgNPsMk to play a significant role in biomedical applications and formulations.

Style Synthesis of Speech Videos Through Generative Adversarial Neural Networks (적대적 생성 신경망을 통한 얼굴 비디오 스타일 합성 연구)

  • Choi, Hee Jo;Park, Goo Man
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.465-472
    • /
    • 2022
  • In this paper, the style synthesis network is trained to generate style-synthesized video through the style synthesis through training Stylegan and the video synthesis network for video synthesis. In order to improve the point that the gaze or expression does not transfer stably, 3D face restoration technology is applied to control important features such as the pose, gaze, and expression of the head using 3D face information. In addition, by training the discriminators for the dynamics, mouth shape, image, and gaze of the Head2head network, it is possible to create a stable style synthesis video that maintains more probabilities and consistency. Using the FaceForensic dataset and the MetFace dataset, it was confirmed that the performance was increased by converting one video into another video while maintaining the consistent movement of the target face, and generating natural data through video synthesis using 3D face information from the source video's face.

X-Ray Scattering Studies on Molecular Structures of Star and Dendritic Polymers

  • Jin, Sang-Woo;Jin, Kyeong-Sik;Yoon, Jin-Hwan;Heo, Kyu-Young;Kim, Je-Han;Kim, Kwang-Woo;Ree, Moon-Hor;Higashihara, Tomoya;Watanabe, Takumi;Hirao, Akira
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.686-694
    • /
    • 2008
  • We studied the molecular shapes and structural characteristics of a 33-armed, star polystyrene (PS-33A) and two $3^{rd}$-generation, dendrimer-like, star-branched poly(methyl methacrylate)s with different architectures (pMMA-G3a and PMMA-3Gb) and 32 end-branches under good solvent and theta ($\Theta$) solvent conditions by using synchrotron small angle X-ray scattering (SAXS). The SAXS analyses were used to determine the structural details of the star PS and dendrimer-like, star-branched PMMA polymers. PS-33A had a fuzzy-spherical shape, whereas PMMA-G3a and PMMA-G3b had fuzzy-ellipsoidal shapes of similar size, despite their different chemical architectures. The star PS polymer's arms were more extended than those of linear polystyrene. Furthermore, the branches of the dendrimer-like, star-branched polymers were more extended than those of the star PS polymer, despite having almost the same number of branches as PS-33A. The differences between the internal chain structures of these materials was attributed to their different chemical architectures.