• Title/Summary/Keyword: Shape Recognition Algorithm

Search Result 233, Processing Time 0.023 seconds

3D Face Recognition using Wavelet Transform Based on Fuzzy Clustering Algorithm (펴지 군집화 알고리즘 기반의 웨이블릿 변환을 이용한 3차원 얼굴 인식)

  • Lee, Yeung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1501-1514
    • /
    • 2008
  • The face shape extracted by the depth values has different appearance as the most important facial information. The face images decomposed into frequency subband are signified personal features in detail. In this paper, we develop a method for recognizing the range face images by multiple frequency domains for each depth image using the modified fuzzy c-mean algorithm. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area. And the second step takes into consideration of the orientated frontal posture to normalize. Multiple contour line areas which have a different shape for each person are extracted by the depth threshold values from the reference point, nose tip. And then, the frequency component extracted from the wavelet subband can be adopted as feature information for the authentication problems. The third step of approach concerns the application of eigenface to reduce the dimension. And the linear discriminant analysis (LDA) method to improve the classification ability between the similar features is adapted. In the last step, the individual classifiers using the modified fuzzy c-mean method based on the K-NN to initialize the membership degree is explained for extracted coefficient at each resolution level. In the experimental results, using the depth threshold value 60 (DT60) showed the highest recognition rate among the extracted regions, and the proposed classification method achieved 98.3% recognition rate, incase of fuzzy cluster.

  • PDF

Refinement of Building Boundary using Airborne LiDAR and Airphoto (항공 LiDAR와 항공사진을 이용한 건물 경계 정교화)

  • Kim, Hyung-Tae;Han, Dong-Yeob
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.136-150
    • /
    • 2008
  • Many studies have been carried out for automatic extraction of building by LiDAR data or airphoto. Combining the benefits of 3D location information data and shape information data of image can improve the accuracy. So, in this research building recognition algorithm based on contour was used to improve accuracy of building recognition by LiDAR data and elaborate building boundary recognition by airphoto. Building recognition algorithm based on contour can generate building boundary and roof structure information. Also it shows better accuracy of building detection than the existing recognition methods based on TIN or NDSM. Out of creating buffers in regular size on the building boundary which is presumed by contour, this research limits the boundary area of airphoto and elaborate building boundary to fit into edge of airphoto by double active contour. From the result of this research, 3D building boundary will be able to be detected by optimal matching on the constant range of extracted boundary in the future.

  • PDF

Text Detection and Recognition in Outdoor Korean Signboards for Mobile System Applications (모바일 시스템 응용을 위한 실외 한국어 간판 영상에서 텍스트 검출 및 인식)

  • Park, J.H.;Lee, G.S.;Kim, S.H.;Lee, M.H.;Toan, N.D.
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.44-51
    • /
    • 2009
  • Text understand in natural images has become an active research field in the past few decades. In this paper, we present an automatic recognition system in Korean signboards with a complex background. The proposed algorithm includes detection, binarization and extraction of text for the recognition of shop names. First, we utilize an elaborate detection algorithm to detect possible text region based on edge histogram of vertical and horizontal direction. And detected text region is segmented by clustering method. Second, the text is divided into individual characters based on connected components whose center of mass lie below the center line, which are recognized by using a minimum distance classifier. A shape-based statistical feature is adopted, which is adequate for Korean character recognition. The system has been implemented in a mobile phone and is demonstrated to show acceptable performance.

Multi-Region based Radial GCN algorithm for Human action Recognition (행동인식을 위한 다중 영역 기반 방사형 GCN 알고리즘)

  • Jang, Han Byul;Lee, Chil Woo
    • Smart Media Journal
    • /
    • v.11 no.1
    • /
    • pp.46-57
    • /
    • 2022
  • In this paper, multi-region based Radial Graph Convolutional Network (MRGCN) algorithm which can perform end-to-end action recognition using the optical flow and gradient of input image is described. Because this method does not use information of skeleton that is difficult to acquire and complicated to estimate, it can be used in general CCTV environment in which only video camera is used. The novelty of MRGCN is that it expresses the optical flow and gradient of the input image as directional histograms and then converts it into six feature vectors to reduce the amount of computational load and uses a newly developed radial type network model to hierarchically propagate the deformation and shape change of the human body in spatio-temporal space. Another important feature is that the data input areas are arranged being overlapped each other, so that information is not spatially disconnected among input nodes. As a result of performing MRGCN's action recognition performance evaluation experiment for 30 actions, it was possible to obtain Top-1 accuracy of 84.78%, which is superior to the existing GCN-based action recognition method using skeleton data as an input.

The Cucumber Cognizance for Back Propagation of Nerual Network (신경회로망의 오류역전파 알고리즘을 이용한 오이 인식)

  • Min, Byeong-Ro;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.277-282
    • /
    • 2011
  • We carried out shape recognition. We found out cucumber's feature shape by means of neural network and back propagation algorithm. We developed an algorithm which finds object position and shape in real image and we gained following conclusion as a result. It was processed for feature shape extraction of cucumber to detect automatic. The output pattern rates of the miss-detected objects was 0.1~4.2% in the output pattern which was recognized as cucumber. We were gained output pattern according to image resolution $445{\times}363$, $501{\times}391$, $450{\times}271$, $297{\times}421$. It was appeared that no change was detected. When learning pattern was increased to 25, miss-detection ratio was 16.02%, and when learning pattern had 2 pattern, it didn't detect 8 cucumber in 40 images.

Multi-Objective Optimum Shape Design of Rotor-Bearing System with Dynamic Constraints Using Immune-Genetic Algorithm (면역.유전 알고리듬을 이용한 로터 베어링시스템의 다목적 형상최적설계)

  • Choe, Byeong-Geun;Yang, Bo-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1661-1672
    • /
    • 2000
  • An immune system has powerful abilities such as memory, recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this pap er, the combined optimization algorithm (Immune- Genetic Algorithm: IGA) is proposed for multi-optimization problems by introducing the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The optimizing ability of the proposed combined algorithm is identified by comparing the result of optimization with simple genetic algorithm for two dimensional multi-peak function which have many local optimums. Also the new combined algorithm is applied to minimize the total weight of the shaft and the transmitted forces at the bearings. The inner diameter oil the shaft and the bearing stiffness are chosen as the design variables. The dynamic characteristics are determined by applying the generalized FEM. The results show that the combined algorithm and reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic conatriants.

Shape Recognition of Parts and Software Development by using Border Tracking and Cross Correlatioin Method (경계선추적과 상관계수법을 이용한 부품의 형상인식과 소프트웨어개발)

  • 유성민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.100-105
    • /
    • 1998
  • Image processing was used to recognize parts at various disposition. Non-transpatent tachometer panel for automobile and semi-transparent panel have been used as test specimen. Laplacian filter and various threshold values have been applied for preprocessing and edge following algorithm has been applied. Series of length data between edges have been generated from each image and compared using cross correlation coefficient. The result using cross correlation coefficient. The result using both edge following and cross correlation coefficient was proven to be the best fit for the proposed parts.

  • PDF

A new object recognition algorithm using generalized incremental circle transform

  • Han, Dong-Il;You, Bum-Jae;Zeungnam Bien
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.933-938
    • /
    • 1990
  • A method of recognizing 2-dimensional polygonal object is proposed by using a concept of generalized incremental circle transform. The generalized incremental circle transform, which maps boundaries of an object into a circular disc, represents efficiently the shape of the boundaries that are obtained from digirized binary images of the objects. It is proved that the generalized incremental circle transform of an object is invariant to object translation, rotation, and size, and can be used as feature information for recognizing two dimensional polygonal object efficiently.

  • PDF

Structuring Element Representation of an Image and Its Applications

  • Oh, Jin-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.509-515
    • /
    • 2004
  • In this paper we present the linear combination of a fuzzy opening and closing filter with locally adaptive structuring elements that can preserve the geometrical features of an image. Based on the adaptation algorithm of linear combination of the fuzzy opening and closing filter, the optimal structuring element for image representation is obtained. The optimal structuring element is an indicator of the shape and direction of an object's image, which is useful in filtering, multi resolution, segmentation, and recognition of an image.

The Research of Shape Recognition Algorithm for Image Processing of Cucumber Harvest Robot (오이수확로봇의 영상처리를 위한 형상인식 알고리즘에 관한 연구)

  • Min, Byeong-Ro;Lim, Ki-Taek;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • Pattern recognition of a cucumber were conducted to detect directly the binary images by using thresholding method, which have the threshold level at the optimum intensity value. By restricting conditions of learning pattern, output patterns could be extracted from the same and similar input patterns by the algorithm. The algorithm of pattern recognition was developed to determine the position of the cucumber from a real image within working condition. The algorithm, designed and developed for this project, learned two, three or four learning pattern, and each learning pattern applied it to twenty sample patterns. The restored success rate of output pattern to sample pattern form two, three or four learning pattern was 65.0%, 45.0%, 12.5% respectively. The more number of learning pattern had, the more number of different out pattern detected when it was conversed. Detection of feature pattern of cucumber was processed by using auto scanning with real image of 30 by 30 pixel. The computing times required to execute the processing time of cucumber recognition took 0.5 to 1 second. Also, five real images tested, false pattern to the learning pattern is found that it has an elimination rate which is range from 96 to 98%. Some output patterns was recognized as a cucumber by the algorithm with the conditions. the rate of false recognition was range from 0.1 to 4.2%.