• Title/Summary/Keyword: Shape Optimization of Permanent Magnet

Search Result 41, Processing Time 0.044 seconds

Optimal Design of the Optical Pickup Actuator Coil (광픽업 구동기 코일최적설계)

  • Yoon Young, Kim;Woochun, Kim;Jae Eun, Kim
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.352-355
    • /
    • 2004
  • The objective of this work is to develop a new design method to find optimal coils, especially the optimal coil configuration of an optical pickup actuator. In designing actuator coils, the developed Lorenz force in the coils along the desired direction should be made as large as possible while forces and torques in other directions should be made as small as possible. The design methodology we are developing is a systematic approach that can generate optimal coil configurations for given permanent magnet configurations. To consider the best coil configuration among all feasible coil configurations, we formulate the design problem as a topology optimization of a coil. The present formulation for coil design is noble in the sense that the existing topology optimization is mainly concerned with the design of yokes and permanent magnets and that the optimization of actuator coils is so far limited within shape or size optimization. Though the present design methodology applies to any problem, the specific design example considered is the design of fine-pattern tracking and focusing coils.

  • PDF

Shape Optimization for Magnetic Pole Piece of PM MRI using Nonlinear Parameterized Sensitivity Analysis (매개화된 민감도 해석에 의한 PM MRI의 Pole Piece 형상 최적화)

  • Ryu, Jae-Seop;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.70-72
    • /
    • 2004
  • The ferromagnetic pole piece of permanent magnet assembly for magnetic resonance imaging(MRI) is optimally designed to get high homogenious magnetic field, taking into account the non-linearity of the magnetic materials. In the design, the pole face is kept smooth and axis-symmetric by using B-spline parameterization, and nonlinear design sensitivity analysis is used for search direction.

  • PDF

Optimal Design of Extremely Small Thrust VCM for Nanoindenter (나노 인덴터용 미소 추력 보이스코일 모터의 최적 설계)

  • 조주희;이진우;이철규;권병일
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.69-75
    • /
    • 2004
  • In this paper, we propose the shape of extremely small thrust VCM for application of the Nanoindenter, which enables control of very small force and displacement. We performed optimization of the VCM shape using conjugated gradient method. And the purposes of optimization are the minimization of the permanent magnet size for the efficient systems, minimization of deviation of flux density from the air gap for operate on regular thrust and a linearization of thrust for a good control characteristic. The finite element method is used for characteristic analysis. The node moving method is used to redundant changes of design variables. As a result, the VCM produces a yew small force by the difference of flux density of lower part from higher one. Also, in a wide range of current (0[A]-1[A]), the VCM produces linear driving thrust by saturating the magnetic circuit path and operate on regular thrust by minimizing deviation of flux density of the air gap.

Optimal Rotor Shape Design of 150kW-class IPMSM for Reduce Usage of Permanent Magnet and Satisfy Induced Voltage (150kW급 IPMSM의 영구자석 사용량 저감과 유기전압 만족를 위한 회전자 형상 최적설계)

  • Jeong, Tae-Chul;Kim, Won-Ho;Jang, Ik-Sang;Kim, Mi-Jung;Lee, Ki-Deok;Lee, Jae-June;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.991-992
    • /
    • 2011
  • This study was designed to satisfy induced voltage limits considering drive's specifications and optimize design reducing usage of permanent magnet, by increasing salient poles ratio, when designing 150kW IPMSM. In order to achieve these objectives, design plans were determined, based on Ld and Lq parameters of a basic design model, according to changes in salient poles ratio and flux linkage using IPMSM's voltage equation and torque equation and then, required torque and induced voltage were analyzed using Sensitivity Analysis. Based on analysis data, the optimum design was performed and basic model's characteristics were compared to final model's through Gradient-Based Optimization Technique.

  • PDF

Optimum Shape Design of Spoke Type Motor for Maximum Torque and Minimum Torque Ripple (Spoke type 전동기의 최대토크와 최소토크리플을 위한 형상 최적 설계)

  • Lee, Jin-Kyoung;Kim, Young-Hyun;Kim, Hong-Seok;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.810-811
    • /
    • 2015
  • In this paper, we investigate the optimization design for a spoke type motor with the characteristics of high torque density and high-efficiency. This motor has a high output per unit volume. In order to reduce noise and vibration caused by a high cogging torque, optimization design of the rotor and stator have been conducted using both Response surface method (RSM) and Finite elements method (FEM). In this paper, we show the potential for this motor to efficiently replace existing interior permanent magnet synchronous motors (IPMSM) in a wide range of industries.

  • PDF

Optimal Design of the Optical Pickup Actuator Coil (광픽업 구동기 코일최적설계)

  • Woo Chul, Kim;Jae Eun, Kim
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1147-1152
    • /
    • 2004
  • The objective of this work is to develop a new design method to find optimal coils, especially the optimal coil configuration of an optical pickup actuator. In designing actuator coils, the developed Lorenz force in the coils along the desired direction should be made as large as possible while forces and torques in other directions should be made as small as possible. The design methodology we are developing is a systematic approach that can generate optimal coil configurations for given permanent magnet configurations. To consider the best coil configuration among all feasible coil configurations, we formulate the design problem as a topology optimization of a coil. The present formulation for coil design is noble in the sense that the existing topology optimization is mainly concerned with the design of yokes and permanent magnets and that the optimization of actuator coils is so far limited within shape or size optimization. Though the present design methodology applies to any problem, the specific design example considered is the design of fine-pattern tracking and focusing coils.

Optimal Design of a PMLSM with 9 Pole 10 Slot for Detent Force Reduction (9극 10슬롯 구조의 영구자석 선형 동기 전동기의 디텐트력 저감을 위한 최적설계)

  • Hwang, In-Sung;Yoon, Hee-Sung;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.589-595
    • /
    • 2008
  • Detent force of a permanent magnet linear motor(PMLSM) consist of cogging and drag forces, and should be minimized for high precision control purpose applications. This paper shows that the cogging force can be reduced effectively by employing 9 pole 10 slot structure. The drag force is minimized by optimizing the total length and shape of the exterior teeth of armature core simultaneously by using($1+{\lambda}$) evolution strategy coupled with response surface method. After optimization, the optimized PMLSM is proven to reduce 95% and 92.6% of the cogging and total detent forces, respectively, and give 12% and 6.4% higher Back-emf and thrust force, respectively, compared with a conventional 12 pole 9 slot structure under the same condition. Additionally, Simulation results by the proposed optimum design are verified by the experiment results.

A Permanent Magnet Pole Shape Optimization for a BLDC Motor by using Response Surface Method (Response Surface Method를 이용한 소형 BLDC 전동기의 영구자석 형상 최적화 연구)

  • Woo, Sung-Hyun;Chung, Hee-Joon;Chung, Hyun-Koo;Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.129-131
    • /
    • 2007
  • BLDC 모터의 진동 및 소음의 원인인 영구자석과 슬롯 개구부 형상에 의한 코깅토크를 저감시키기 위하여, RSM(Response Surface Method)과 FEM(Finite Element Method)를 이용하여 영구자석의 형상을 최적화 하였다. 최적화 과정은 총 2단계에 걸쳐 진행되었다. 1단계에서는 영구자석의 자극간격을 구하고, 2단계에서 자석의 형상을 변화시저 최적화한 결과, 최적화 전 후의 코깅도가, 최대 0.051[N.m]에서 0.029[N.m]로 약 50% 감소하였다.

  • PDF

The Optimization of Rotor Shape for Constant Torque Improvement and Radial Magnetic Force Minimization (IPMSM의 정토크 특성 향상 및 가진력 최소화를 위한 회전자 형상 최적화)

  • Ji, Seung-Hun;Park, Kyoung-Won;Jang, Ki-Bong;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1047-1048
    • /
    • 2011
  • 본 논문에서는 IPMSM(Interior Permanent Magnet Synchronous Motor)의 단점인 치, 슬롯 구조에 의한 코깅 토크를 최소화시켜 정토크 특성을 향상시키기 위해 배리어(Barrier)와 노치(Notch)를 설치하였다. 실험계획법 및 유한요소해석을 통하여 최적 설계를 수행하고 그에 따른 제반 특성과 진동 및 소음의 원인이 되는 가진력 특성을 고찰 하였다.

  • PDF

An Optimal Design of Notch Shape of IPM BLDC Motor Using the Differential Evolution Strategy Algorithm (차분진화 알고리즘을 이용한 IPM형 BLDC전동기의 Notch 형상 최적화 설계 연구)

  • Shin, Pan Seok;Kim, Hong Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.279-285
    • /
    • 2016
  • In this paper, a cogging torque of IPM(Interior Permanent Magnet)-type BLDC motor is analyzed by FE program and the optimized notch on the rotor surface is designed to minimize the torque ripple. A differential evolution strategy algorithm and a response surface method are employed to optimize the rotor notch. In order to verify the proposed algorithm, an IPM BLDC motor is used, which is 50 kW, 8 poles, 48 slots and 1200 rpm at the rated speed. Its characteristics of the motor is calculated by FE program and 4 design variables are set on the rotor notch. The initial shape of the notch is like a non-symmetric half-elliptic and it is optimized by the developed algorithm. The cogging torque of the final model is reduced to $1.5[N{\cdot}m]$ from $5.2[N{\cdot}m]$ of the initial, which is about 71 % reduction. Consequently, the proposed algorithm for the cogging torque reduction of IPM-type BLDC motor using the rotor notch design seems to be very useful to a mechanical design for reducing noise and vibration.