• Title/Summary/Keyword: Shape Improvement

Search Result 1,317, Processing Time 0.03 seconds

A Study on the Disaster Prevention Design- Based Safety Signs in School Zone

  • Noh, Hwang-Woo;Oh, Chi-Gyu
    • International Journal of Contents
    • /
    • v.13 no.2
    • /
    • pp.50-56
    • /
    • 2017
  • The number of accidents in school zone is decreasing than before with the introduction of strengthening traffic safety policy since January 2011, but the danger still exists. The School zone sign is widely known to have much effect in protecting children from risks of traffic accidents, but design improvement is being demanded to improve a sense of safety and legibility of safety signs in School zone due to the lack of understanding on the safety signs in crosswalk and School zone. This study analyzed differences in shape and color of existing safety signs through a case analysis of traffic developed countries as America, England, Japan, and Germany and suggested improvement plans for drivers to clearly perceive the school zone. For improvement methods, this study suggested the importance of delivering definite and unified warning message for school zone to drivers by using indication sign and caution sign together, and to use yellow, a safety color, and to unify the safety sign into triangle shape that symbolizes warning and caution to conform the international standards. Actual design production and experiment through improvement plans are needed in the future, and it is expected to secure safety of children and to provide international standardization of safety signs in school zone.

Using Magnetic Quadrupoles in Cathode-Ray Tubes

  • Sluyterman, A.A.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.367-370
    • /
    • 2002
  • CRTs can be improved by means of magnetic quadrupoles. Areas of improvement are convergence, spot shape, image-flatness and space charge compensation.

  • PDF

Analysis of Cross-Section Shape Slope of Pillar for Vacuum Glazing according to the Screen Printing Parameters (스크린 인쇄 공정 변수에 따른 진공유리용 필러의 단면형상 기울기 분석)

  • Kim, Jae Kyung;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.43-48
    • /
    • 2012
  • The screen printing method is much used in the flat panel display field including the LCD, PDP, FED, organic EL, and etc. for forming the high precision micro-pattern. Also A number of studies of screen printing method has been conducted as the method for the cost down through the improvement of productivity. Because of being the dot printing method of the cylindrical shape not being the line printing method like the existing PDP barrier rib and phosphor, the pillar arrays using the screen printing method is deposited in the hemispherical type not being cylindrical shape in the existing printing process conditions. In this paper, the parameters were set on the screen printing device in order to deposit the cross-sectional shape with the cone or trapezoid shape of the pillar in depositing the pillars used the screen printing device for vacuum glazing. The cross-sectional shape slope of the pillar according to the parameters was measured. And analysis the effect of the screen printing process conditions on the cross-sectional shape slope of pillars based upon the result of being measured. The processing conditions were drawn to minimize the cross-sectional shape slope of pillar.

A Study on Shape Design of NFR Suspension for Optimal Dynamic Characteristics (NFR 서스펜션의 동특성을 고려한 형상설계에 관한 연구)

  • Eun, Gil-Soo;Kim, Noh-Yu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.771-776
    • /
    • 2002
  • Optimal shape of the NFR suspension is studied and developed to improve the dynamic performance and reduce the vibration of the suspension system including a optical head slider. Since accurate position control and stability of the slider motion are highly required in NFR due to the narrower track width and the heavier slider than HDD slider with the low flying height, the dynamic characteristics of the suspension are very important to the mechanical performance of the system. The first natural frequencies in flexural and lateral motion of the suspension are critical factors affecting the dynamics and stability of the flying head, so that the dynamic parameters should be designed properly to avoid an excessive vibration or a crash of the slider on the disk. This paper optimizes the shape of the suspension based on homogenization method in NASTRAN and develops a new suspension shape for NFR system. The suspension is tested on experiment to verify the improvement of the dynamic characteristics.

  • PDF

Improvement of the Flow Around Airfoil/Flat-Plate Junctures by Optimization of the Leading-Edge Shape (날개-평판 접합부에서의 날개 앞전 형상 최적화를 통한 유동특성 향상)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.257-265
    • /
    • 2009
  • The present study deals with the leading edge shape on a wing-body junction to decrease a horseshoe vortex, one of the main factors to generate the secondary flow losses. The shape of leading-edge is optimized with design variables form the leading-edge shape. Approximate optimization design method is used for the optimization. The study is investigated using $FLUENT^{TM}$ and $iSIGHT^{TM}$. As the result, total pressure coefficient of the optimized design case was decreased about 9.79% compare to the baseline case.

  • PDF

Effect of Vortex Generator in Intake Pipe on the Moisture Concentration Distributions and Combustion Performance in a CI Engine (흡기관내 와류생성기가 압축착화엔진의 수분 농도 분포 및 연소성능 향상에 미치는 영향)

  • Jeong, Seok Hoon;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.169-174
    • /
    • 2018
  • In this work, optimization of blade shape for the improvement of mixture formation and vortex of intake port was performed by numerically, and the combustion performance of CI engine with optimized blade shape was investigated. To achieve this, 3 types of blade shape were studied under the different air flow mass conditions and the numerical results were investigated in terms of humidification water, moisture concentration, and velocity distributions. Evaporated liquid mass was also compared under various test conditions to reveal the turbulent intensity in an intake port. It was observed that the optimized blade shape can improve the humidification water, moisture concentration, and velocity distributions of intake port inside. The evaporated liquid mass was also increased under the conditions with blade. Especially, low NOx emissions was observed with optimized blade condition.

Effect of Cold Rolling on Fatigue Crack Propagation of TiNi/A16061 Shape Memory Composite (TiNi/A16061 형상기억복합재료의 피로균열진전에 대한 냉간압연효과)

  • Lee Jin-Kyung;Park Young-Chul;Lee Kyu-Chang;Lee Sang-Pill;Cho Youn-Ho;Lee Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1315-1320
    • /
    • 2005
  • TiNi alloy fiber was used to recover the original shape of materials using its shape memory effect. The shape memory alloy plays an important role within the metal matrix composite. The shape memory alloy can control the crack propagation in metal matrix composite, and improve the tensile strength of the composite. In this study, TiNi/A16061 shape memory alloy(SMA) composite was fabricated by hot press method, and pressed by a roller for its strength improvement. The four kinds of specimens were fabricated with $0\%,\;3.2\%,\;5.2\%\;and\;7\%$ and volume fraction of TiNi alloy fiber, respectively. A fatigue test has performed to evaluate the crack initiation and propagation for the TiNi/A16061 SMA composite fabricated by かis method. In order to study the shape memory effect of the TiNi alloy fiber, the test has also done under both conditions of the room temperature and high temperature. The relationship between the crack growth rate and the stress intensity factor was clarified for the composite, and the cold rolling effect was also studied.

A Study on the Improvement of Shape Optimization associated with the Modification of a Finite Element (유한요소의 개선에 따른 형상최적화 향상에 관한 연구)

  • Sung, Jin-Il;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1408-1415
    • /
    • 2002
  • In this paper, we investigate the effect and the importance of the accuracy of finite element analysis in the shape optimization based on the finite element method and improve the existing finite element which has inaccuracy in some cases. And then, the shape optimization is performed by using the improved finite element. One of the main stream to improve finite element is the prevention of locking phenomenon. In case of bending dominant problems, finite element solutions cannot be reliable because of shear locking phenomenon. In the process of shape optimization, the mesh distortion is large due to the change of the structure outline. So, we have to raise the accuracy of finite element analysis for the large mesh distortion. We cannot guarantee the accurate result unless the finite element itself is accurate or the finite elements are remeshed. So, we approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two and three dimensional simple beam. Results show that the modified finite element has improved the optimization results.

Effect of Shape Parameters of Tool on Improvement of Joining Strength in Clinching (클린칭 접합력 향상을 위한 금형 형상변수의 영향도 평가)

  • Kim, J.Y.;Lee, C.J.;Lee, S.K.;Ko, D.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.392-400
    • /
    • 2009
  • Clinching is a method of joining sheet metals together. This process can be substituted for the resistance spot welding on the joining of aluminum alloys. However, the joining strength of the clinching is lower than that of welding and riveting. The objective of this paper is to evaluate the effect of shape parameters of tools on the joining strength of the clinching and to optimize clinching tools. Twelve parameters have been selected as shape parameters on the clinching tools such as punch and die. The design of experiments (DOE) method is employed to investigate the effect of the shape parameters of tools on the joining strength of the clinching. The neck thickness and undercut of the clinched sheet metal after the clinching, and the separation load at detaching are estimated from the result of FEA using DEFORM. Optimal combination of shape parameters to maximize the joining strength of clinching is determined on the basis of the result of DOE and FEA. In order to validate the result of DOE and FEA, the experiment of clinching is performed for the optimal combination of shape parameters. It is shown from the result of the experiment that optimization of shape parameters improves the joining strength of clinching.

Pruning and Matching Scheme for Rotation Invariant Leaf Image Retrieval

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.280-298
    • /
    • 2008
  • For efficient content-based image retrieval, diverse visual features such as color, texture, and shape have been widely used. In the case of leaf images, further improvement can be achieved based on the following observations. Most plants have unique shape of leaves that consist of one or more blades. Hence, blade-based matching can be more efficient than whole shape-based matching since the number and shape of blades are very effective to filtering out dissimilar leaves. Guaranteeing rotational invariance is critical for matching accuracy. In this paper, we propose a new shape representation, indexing and matching scheme for leaf image retrieval. For leaf shape representation, we generated a distance curve that is a sequence of distances between the leaf’s center and all the contour points. For matching, we developed a blade-based matching algorithm called rotation invariant - partial dynamic time warping (RI-PDTW). To speed up the matching, we suggest two additional techniques: i) priority queue-based pruning of unnecessary blade sequences for rotational invariance, and ii) lower bound-based pruning of unnecessary partial dynamic time warping (PDTW) calculations. We implemented a prototype system on the GEMINI framework [1][2]. Using experimental results, we showed that our scheme achieves excellent performance compared to competitive schemes.