• 제목/요약/키워드: Shape Engineering

검색결과 12,817건 처리시간 0.042초

소음/진동의 컨피규레이션 설계 민감도 연구 (Study on Configuration Design Sensitivity of Noise & Vibration)

  • 왕세명;기성현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.192-198
    • /
    • 1997
  • In the concurrent engineering, the CAD-based design model is necessary for multidisciplinary analysis and for computer-aided manufacturing (CAM). A shape and configuration design velocity field computation of structure has been developed using a computer-aided design (CAD) tool, Pro/ENGINEER. The design Parameterization with CAD tool is to characterize the change in dimensions and movements of geometric control points that govern the shape/orientation of the structural boundary. The boundary velocity is obtained by using a CAD-based finite difference method and the domain velocity field is obtained from finite element analysis (FEA) using the boundary displacement method. In this paper, the continuum configuration DSA for NVH problem, which requires the shape velocity field and the orientation velocity field at the same time, is developed using linear shape functions. For validation of continuum design sensitivity coefficients, design sensitivity coefficients are compared with the coefficients computed using by the finite difference method.

  • PDF

유도가열을 이용한 강판성형공정에서 유도코일 형상의 효과 (Effects of Inductor Shape in Steel Forming Process with High Frequency Induction Heating)

  • 양영수;배강열;신희윤
    • Journal of Welding and Joining
    • /
    • 제26권4호
    • /
    • pp.66-72
    • /
    • 2008
  • Because of high intensity and easy controllability of the heat source, high frequency induction heating has been concerned and studied for the steel forming process in the ship building industry. However, the heating and forming characteristics have to be further properly modelled and analyzed for the process to be utilized with its optimal working parameters. In this study, a modelling with thermo-elasto-plastic analysis is performed using the FEM to study heat flow and deformation of the steel plate during the forming process with the electro-magnetic induction heating. The numerical model is then used to study the effect of the inductor shape on the magnitude of angular deformation of the plate during the forming process. It is revealed that the square shape of inductor induces the largest deformation among the rectangular inductors.

Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm

  • Grzywinski, Maksym;Selejdak, Jacek;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.747-753
    • /
    • 2019
  • Metaheuristic algorithm is used to solve the weight minimization problem of truss structures considering shape, and sizing design variables. The cross-sectional areas of the line element in trusses are the design variables for size optimization and the changeable joint coordinates are the shape optimization used in this study. The design of plane and spatial truss structures are optimized by metaheuristic technique named Teaching-Learning-Based Optimization (TLBO). Finite element analyses of structures and optimization process are carried out by the computer program visually developed by the authors coded in MATLAB. The four benchmark problems (trusses 2D ten-bar, 3D thirty-seven-bar, 3D seventy-two-bar and 2D two-hundred-bar) taken from literature are optimized and the optimal solution compared the results given by previous studies.

승용차용 알루미늄 듀오타입 LPG 탱크의 형상 및 두께 최적설계 (Shape and Thickness Optimization of an Aluminium Duo-type LPG Tank for a Passenger Car)

  • 소순재;최규재;장강원
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.131-135
    • /
    • 2013
  • In this study, to develop a light weight duo type aluminum LPG tank in stead of a conventional steel tank optimization technology is used. Two types of optimization method are carried out for internal compression test simulation of a LPG tank. The first is the thickness only optimization of LPG tank components. The second is the thickness and shape optimization. For the case of the thickness only optimization the weight reduction rate of an optimized tank compare to that of the initial design is 42%. Also 48% weight reduction was achieved for the case of the thickness and shape optimization.

3D 프린팅시스템과 CAM시스템을 활용한 금형가공에 관한 연구 (Research on Die Machining using 3D Printing and CAM System)

  • 한규택
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.91-98
    • /
    • 2014
  • The purpose of this research is to investigate optimum machining conditions to improve the quality of die using the CAD/CAM system(Power Shape/Power Mill) and 3D printing. Surface roughness is widely used as an index for processing degree of accuracy. The Power Shape was used to model the shape of product. And the model shape is confirmed by 3D printing system(BFB-3000). Also, tool path and NC-codes were generated using Power Mill. Finally, the product was cut using CNC machine(NBS-2025). The cutting time and surface roughness were measured by measuring instrument. And then this process was repeated by changing the conditions to find optimal machining conditions. The surface roughness behavior with regard to specific factors were analyzed. Through this study, the optimal machining condition can be obtained.

Boundary Method for Shape Design Sensitivity Analysis in Solving Free-Surface Flow Problems

  • Choi Joo Ho;Kwak H. G.;Grandhi R. V.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2231-2244
    • /
    • 2005
  • An efficient boundary-based optimization technique is applied in the numerical computation of free surface flow problems, by reformulating them into the equivalent optimal shape design problems. While the sensitivity in the boundary method has mainly been calculated using the boundary element method (BEM) as an analysis means, the finite element method (FEM) is used in this study because of its popularity and easy-to-use features. The advantage of boundary method is that the design velocity vectors are needed only on the boundary, not over the whole domain. As such, a determination of the complicated domain design velocity field, which is necessary in the domain method, is eliminated, thereby making the process easy to implement and efficient. Seepage and supercavitating flow problem are chosen to illustrate the accuracy and effectiveness of the proposed method.

3D 프린팅 필라멘트 재료에 따른 유압액츄에이터 커브의 치수 특성 (Dimensional Characteristics of Hydraulic Actuator Curve based on 3D Printing Filament Materials)

  • 정명휘;공정리;김해지
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.74-79
    • /
    • 2021
  • In this paper, the 3D shape of a hydraulic actuator cover was 3D printed by applying two materials, namely PLA and ABS. Subsequently, the printed shape was scanned to analyze the material properties, dimensional change characteristics, dimensions, and scan shape as a real model. To compare and analyze material-specific 3D printing dimensions, a non-contact mobile laser scanner was used to scan a portion of the printed hydraulic actuator cover and the final alignment shape of the 3D printed part was studied on the basis of the design model.

A Study on the Remanufacturing for Drive Spur Gear in Planner Miller by Directed Energy Deposition

  • Jin, Chul-Kyu;Kim, Min-Woo;Woo, Jae-Hyeog
    • 한국산업융합학회 논문집
    • /
    • 제25권6_1호
    • /
    • pp.941-952
    • /
    • 2022
  • In this study, additive manufacturing technology was applied to restore a planner miller that was unusable due to aging. The drive spur gear of the planner miller was inoperable due to many defects in the teeth. The shape of the defective gear teeth was restored by deposition of the defective teeth using the DED method. However, as the location of the deposition head and the location of the set origin became farther, the deposition shape was different from the modeling shape. Nonetheless, since the modeling of the deposition part was designed to be larger than the tooth shape of the original gear, it was possible to completely restore all gear teeth through post-processing. The arrangement interval of the flow lines of the deposition part was narrower than that of the substrate. The hardness of the substrate was 172 HV, and that of the deposition part was 345 HV, which was twice as high as that of the substrate.

위상최적설계와 형상최적설계를 이용한 크레인의 경량설계 (Lightweight Crane Design by Using Topology and Shape Optimization)

  • 김영철;홍정기;장강원
    • 대한기계학회논문집A
    • /
    • 제35권7호
    • /
    • pp.821-826
    • /
    • 2011
  • CAE 기반 구조최적설계법인 위상최적설계와 형상최적설계를 크레인의 경량화에 적용하였다. 붐은 단면 형상을 설계 변수로 변화시키면서 질량의 최소화를 최적설계의 목적함수로 하고 붐의 정적강도와 동적강성이 초기 모델의 성능에 비해서 저하되지 않아야 한다는 제한조건을 설정하였다. 구조해석 및 최적설계는 상용소프트웨어인 Hyperworks를 이용하여 수행하였으며 붐의 단면 형상의 변형에 따르는 요소망의 변동은 모핑 기능을 사용하여 수치 안정성을 확보하였다. 붐의 지지부는 초기 모델을 단순화시킨 설계 영역을 설정하고 이를 삼차원 솔리드 요소로 이산화한 후 위상최적설계를 수행하였다. 최적설계 결과 시스템의 전체 동적, 정적 강성을 저하시키지 않은 채로 붐은 19%, 지지부는 17% 경량화시킬 수 있었다.

Ni-Ti계 합금 선재의 변태온도 변화에 따른 인장변형 및 회복 특성 (Characteristics of Tensile Deformation and Shape Recovery with Transformation Temperature Change in a Ni-Ti Alloy Wire)

  • 최윤길;김미선;조우석;장우양
    • 열처리공학회지
    • /
    • 제21권6호
    • /
    • pp.307-313
    • /
    • 2008
  • The tensile deformation and shape recovery behaviors were studied in Ni-Ti shape memory wires showing different transformation characteristics by annealing at $200{\sim}600^{\circ}C$. Both R phase ${\rightarrow}$ B19' martensitic transformation at lower temperature and B2 ${\rightarrow}$ R phase transformation at higher temperature occurred in the shape memory wires annealed at $200{\sim}500^{\circ}C$. Transformation temperature and heat flow of B19' martensite increase but those of R phase main almost constant even with increasing annealing temperature. In the case of wires annealed and then cooled to $20^{\circ}C$, plateau on stress-strain curves in tensile testing can be observed due to the collapse of R phase variants and the formation of deformation-induced B19' martensite. In the case of wires annealed and then cooled to $-196^{\circ}C$, however, plateau on stress-strain curves does not appear and stress increases steadily with increasing tensile deformation. Comparing shape recovery rate with cooling temperature after annealing, shape recovery rate of the wire cooled to $20^{\circ}C$ is higher than that of the wire cooled to $-196^{\circ}C$ after annealing, and maximum shape recovery rate of 95% appears in the wire annealed at $400^{\circ}C$ and then cooled to $20^{\circ}C$. $R_s$ and $R_f$ temperatures measured during shape recovery tests are higher than $A_s$ and $A_f$ temperatures measured by DSC tests even at the same annealing temperature.