• 제목/요약/키워드: Shape Accuracy

검색결과 1,648건 처리시간 0.033초

적응적 영역분할법을 이용한 임의의 점군으로부터의 형상 재구성 (Shape Reconstruction from Unorganized Cloud of Points using Adaptive Domain Decomposition Method)

  • 유동진
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.89-99
    • /
    • 2006
  • In this paper a new shape reconstruction method that allows us to construct surface models from very large sets of points is presented. In this method the global domain of interest is divided into smaller domains where the problem can be solved locally. These local solutions of subdivided domains are blended together according to weighting coefficients to obtain a global solution using partition of unity function. The suggested approach gives us considerable flexibility in the choice of local shape functions which depend on the local shape complexity and desired accuracy. At each domain, a quadratic polynomial function is created that fits the points in the domain. If the approximation is not accurate enough, other higher order functions including cubic polynomial function and RBF(Radial Basis Function) are used. This adaptive selection of local shape functions offers robust and efficient solution to a great variety of shape reconstruction problems.

평엔드밀링 공정에서 절삭속도 및 이송속도가 측벽의 축방향 형상에 미치는 영향 (Effects of Cutting Speed and Feed Rate on Axial Shape in Side Walls Generated by Flat End-milling Process)

  • 김강
    • 대한기계학회논문집A
    • /
    • 제41권5호
    • /
    • pp.391-399
    • /
    • 2017
  • 절삭속도 및 이송속도가 평엔드밀로 하향절삭 가공된 측벽 형상에 미치는 영향을 실험을 통하여 알아보고자 한다. 실험은 절삭속도 및 공구 직경, 절삭날 당 이송거리를 변수로 하여 수행하며, 실험 결과로서 배분력과 축방향 형상을 측정한다. 연구 결과, 이송속도를 절삭속도로 나눈 값에 비례하는 날 당 이송거리가 작을수록 축방향 형상정밀도가 높아지는 것이 확인되었다. 아울러, 축방향 형상은 서로 다른 기울기를 갖는 두 직선이 특이점에서 만나는 형태로 단순화 할 수 있다. 그러므로 운전 중 작업자에 의한 형상정밀도의 추정 및 날 당 이송거리 조정에 의한 개선이 용이할 것으로 판단된다.

특이 형상함수를 이용한 Pollution 적응 요소생성 알고리즘 (A Pollution Adaptive Mesh Generation Algorithm Using Singular Shape Functions)

  • 유형선;장준환;편수범
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.110-118
    • /
    • 2001
  • In many areas of finite element analysis, elements with special properties are required to achieve maximal accuracy. As examples, we may mention infinite elements for the representation of spatial domain that extend to special and singular elements for modeling point and line singularities engendered by geomeric features such as reentrant corners and cracks. In this paper, we study on modified shape function representing singular properties and algorigthm for the pollution adaptive mesh generation. We will also show that the modified shape function reduces pollution error and local error.

  • PDF

SLS에서의 정밀도 향상을 위한 실험적 연구 (An Experimental Study for Accuracy Enhancement of SLS)

  • 신동훈;전병철;김재도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.943-946
    • /
    • 2000
  • Selective laser sintering(SLS) is a solid freeform fabrication process whereby a part is built layerwise by scanning a powder bed. The properties of metal powder are dependent on the heat, it is not easy to do the exact error compensation with analysis and estimation by modeling. This paper suggests that the error is compensated by experimental method and then the accuracy of shape is enhanced by revising of STL file. Also bonding force is measured by an experiment with change of process path.

  • PDF

임의의 비정렬 격자계에서의 국지적 선형 재구성 기법 (A Locally Linear Reconstruction scheme on arbitrary unstructured meshes)

  • 이경세;백제현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.31-36
    • /
    • 2003
  • A field reconstruction scheme for a cell centered finite volume method on unstructured meshes is developed. Regardless of mesh quality, this method is exact within a machine accuracy if the solution is linear, which means it has full second order accuracy. It does not have any limitation on cell shape except convexity of the cells and recovers standard discretization stencils at structured orthogonal grids. Accuracy comparisons with other popular reconstruction schemes are performed on a simple example.

  • PDF

배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구 (A Study on Net-shape Technology of Automotive Lock-up Hub using Cold Back Pressure Forming)

  • 권용철;이정환;이영선
    • 소성∙가공
    • /
    • 제17권2호
    • /
    • pp.124-129
    • /
    • 2008
  • Net shape forging technologies give many effects into the costs and qualities for the finished products. So, the studies to reduce the additional machining amount are very important in forging industry. Specially, there are two main topics in cold forging industry, such as, tool life and precision forging. In this study, new forging technique was proposed to eliminate the machining process for fixing up the length and improve the lead accuracy of gear. The luck-up hub is manufactured through many processes, such as upsetting, piercing and direct extrusion. The gear is formed in direct extrusion process; however, lead accuracy of the gear is over allowance limit. Therefore, the additional sizing process must be added. In this study, process design for closed-die forging of a lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

점진성형에서 형상 정밀도에 영향을 미치는 공정 변수 (Effective Process Parameters on Shape Dimensional Accuracy in Incremental Sheet Metal Forming)

  • 강재관;정종윤
    • 산업경영시스템학회지
    • /
    • 제38권4호
    • /
    • pp.177-183
    • /
    • 2015
  • Incremental sheet metal forming is a manufacturing process to produce thin parts using sheet metals by a series of small incremental deformation. The process rarely needs dedicated dies and molds, thus, preparation time for the process is relatively short as to be compared to conventional metal forming. Spring back in sheet metal working is very common, which causes critical errors in dimensions. Incremental sheet metal forming is not fully investigated yet. Hence, incremental sheet metal forming frequently produces inaccurate parts. This paper proposes a method to minimize dimensional errors to improve shape accuracy of products manufactured by incremental forming. This study conducts experiments using an exclusive incremental forming machine and the material for these experiments are sheets of aluminum AL1015. This research defines a process parameter and selects a few factors for the experiments. The parameters employed in this paper are tool feed rate, tool diameter, step depth, material thickness, forming method, dies applied, and tool path method. In addition, their levels for each factor are determined. The plan of the experiments is designed using orthogonal array $L_8$ ($2^7$) which requires minimum number of experiments. Based on the measurements, dimensional errors are collected both on the tool contacted surfaces and on the non-contacted surfaces. The distances between the formed surfaces and the CAD models are scanned and recorded using a commercial software product. These collected data are statistically analyzed and ANOVAs (analysis of variances) are drawn up. From the ANOVAs, this paper concludes that the process parameters of tool diameter, forming depth, and forming method are the significant factors to reduce the errors on the tool contacted surface. On the other hand, the experimental factors of forming method and dies applied are the significant factors on the non-contacted surface. However, the negative forming method always produces better accuracy than the positive forming method.

선택적 요소방법을 이용한 형상 최적 설계 기법 개발 (Development of Shape Optimization Scheme Using Selective Element Method (Application to 2-D Problems))

  • 심진욱;신정규;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.531-536
    • /
    • 2001
  • The structural shape optimization is a useful tool for engineers to determine the shape of a structure. During the optimization process, relocations of nodes happen successively. However, excessive movement of nodes often results in the mesh distortion and eventually deteriorates the accuracy of the optimum solution. To overcome this problem, an efficient method for the shape optimization has been developed. The method starts from the design domain which is large enough to hold the possible shape of the structure. The design domain has pre-defined uniform fine meshes. At every cycle, the method judges whether all the elements are inside of the structure or not. Elements inside of the structure are assigned with real material properties, however elements outside of the structure are assigned with nearly zero values. The performance of the method is evaluated through various examples.

  • PDF

선택적 요소방법을 이용한 구조 형상최적 설계기법의 개발 (Development of a Structural Shape Optimization Scheme Using Selective Element Method)

  • 심진욱;박경진
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2101-2109
    • /
    • 2003
  • Structural shape optimization offers engineers with numerous advantages in designing shapes of structures. However, excessive relocation of nodes often cause distortion of elements and eventually result in degrade of accuracy and even halts of processes. To overcome these problems, an effective method, Selective Element Method(SEM), has been developed. This paper describes the basic concept of SEM and processes to implement into real-world problem. 2-D and 3-D shape optimization problems have been chosen to show the performance of the method. Though some limitations have been found, it was concluded that SEM can be useful in general shape optimization and even in some special cases such as decision of optimal weld line location.

박판구조물의 방사소음에 대한 형상 설계민감도 해석 (Shape Design Sensitivity Analysis For The Radiated Noise From Thin body)

  • 이제원;왕세명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.90-95
    • /
    • 2001
  • A continuum-based shape design sensitivity analysis (DSA) method is presented for the acoustic radiation from thin body. The normal derivative integral formulation is employed as an analysis formulation and differentiated directly by using material derivative to get the acoustic shape design sensitivity. In the acoustic sensitivity formulation, derivative coefficients of the structural normal velocities on the surface are required as the input. Thus, the shape design sensitivities of structural velocities on the surface with respect to the shape change are also calculated with continuum approach. A simple disk is considered as a numerical example to validate the accuracy and efficiency of the analytical shape design sensitivity equations derived in this research. This research should be very helpful to design an application involving thin body and to change its acoustic characteristics.

  • PDF