• Title/Summary/Keyword: Shape Accuracy

검색결과 1,657건 처리시간 0.033초

유한요소의 개선에 따른 형상최적화 향상에 관한 연구 (A Study on the Improvement of Shape Optimization associated with the Modification of a Finite Element)

  • 성진일;유정훈
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1408-1415
    • /
    • 2002
  • In this paper, we investigate the effect and the importance of the accuracy of finite element analysis in the shape optimization based on the finite element method and improve the existing finite element which has inaccuracy in some cases. And then, the shape optimization is performed by using the improved finite element. One of the main stream to improve finite element is the prevention of locking phenomenon. In case of bending dominant problems, finite element solutions cannot be reliable because of shear locking phenomenon. In the process of shape optimization, the mesh distortion is large due to the change of the structure outline. So, we have to raise the accuracy of finite element analysis for the large mesh distortion. We cannot guarantee the accurate result unless the finite element itself is accurate or the finite elements are remeshed. So, we approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two and three dimensional simple beam. Results show that the modified finite element has improved the optimization results.

Static assessment of quadratic hybrid plane stress element using non-conforming displacement modes and modified shape functions

  • Chun, Kyoung-Sik;Kassegne, Samuel Kinde;Park, Won-Tae
    • Structural Engineering and Mechanics
    • /
    • 제29권6호
    • /
    • pp.643-658
    • /
    • 2008
  • In this paper, we present a quadratic element model based on non-conforming displacement modes and modified shape functions. This new and refined 8-node hybrid stress plane element consists of two additional non-conforming modes that are added to the translational degree of freedom to improve the behavior of a membrane component. Further, the modification of the shape functions through quadratic polynomials in x-y coordinates enables retaining reasonable accuracy even when the element becomes considerably distorted. To establish its accuracy and efficiency, the element is compared with existing elements and - over a wide range of mesh distortions - it is demonstrated to be exceptionally accurate in predicting displacements and stresses.

최적블랭크 설계를 위한 초기형상 생성에 관한 연구 (A Study on the Generation of Initial Shape for the Initiation of Optimal Blank Design Sequence)

  • 심현보;장상득;박종규
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.90-101
    • /
    • 2004
  • An inverse mosaic method has been proposed to generate an initial blank shape from the final product shape. Differently from the geometric mapping method, the method can handle triangular patches. However, the generated blank shape is strongly dependent on the order of determination of nodes. In order to compensate the dependency error smoothing technique has been also developed. Although the accuracy has been improved greatly compared with the geometrical mapping method, the method has limitation, due to the no incorporation of plasticity theory. Even though the accuracy of the radius vector method is already proved. the method requires initial guess to start the method. In order to compromise the limitation of the present method and the radius vector method, the method has been connected to the radius vector method. The efficiency of the present optimal blank design method has been verified with some chosen examples.

고차 등매개요소에서 내부절점의 위치와 해의 안정성 연구 (A study on the solution stability by the position of internal nodes in hihger order isoparametric elements)

  • 이준희;임장근
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.1973-1983
    • /
    • 1997
  • Higher order isoparametric elements are usually used in the finite element analysis because they can represent easily the geometric shape of a complex structure ad can improve the solution quality. When these elements are used, the position of internal nodes affects greatly on the solution accuracy. Decreasing of the accuracy related to the position of internal nodes is due to non-conformal mapping often results in an unstable Jacobian value. This paper, in order to remove this difficulty, suggests a modified shape function which can establish conformal mapping between two coordinate systems. Numerical experiments with the proposed shape function show that a stable solution can be obtained without respect to the position of internal nodes, and offer convenience that one can take arbitrarily the position of internal nodes considering only the geometric shape of element boundaries.

점군데이터 정합 방법에 따른 정확도 평가 (Accuracy Evaluation by Point Cloud Data Registration Method)

  • 박준규;엄대용
    • 한국측량학회지
    • /
    • 제38권1호
    • /
    • pp.35-41
    • /
    • 2020
  • 3D 레이저 스캐너는 대상물에 대한 많은 양의 데이터를 빠른 시간 내에 취득할 수 있는 효과적인 방법으로 최근 측량, 변위측정, 대상물의 3차원 데이터 생성, 실내공간정보 구축, BIM (Building Information Model) 등 다양한 분야에 활용되고 있다. 3D 레이저 스캐너를 통해 취득되는 점군데이터의 활용을 위해서는 정합과정을 거쳐 많은 측점에서 취득한 데이터를 통일된 좌표체계를 가진 하나의 데이터로 만드는 과정이 필요하다. 따라서 정합 방법에 따른 점군데이터의 정확도에 대한 분석적 연구가 필요하다 이에 본 연구에서는 3D 레이저 스캐너를 통해 취득되는 점군데이터의 정합방법에 따른 정확도를 분석하고자 하였다. 3D 레이저 스캐너를 통해 연구대상지의 점군데이터를 취득하고, 자료처리를 통해 ICP (Iterative Closest Point) 와 형상정합 방법에 의해 점군데이터를 정합하였으며, 토털스테이션 측량성과와 비교하여 정확도를 분석하였다. 정확도 평가 결과 ICP와 형상정합 방법은 각각 토털스테이션 성과와 0.002~0.005m, 0.002~0.009m의 차이를 나타내었다. 각각의 정합 방법은 실험결과 모두 0.01m 미만의 편차를 나타내어 1:1,000 수치지형도의 허용정확도를 만족하였으며, ICP 및 형상정합을 이용한 점군데이터의 정합이 공간정보 구축에 충분히 활용 가능함을 제시하였다. 향후 형상정합 방법에 의한 점군데이터의 정합은 3D 레이저 스캐너를 활용한 공간정보 구축 과정에서 타겟의 설치를 줄임으로써 생산성 향상에 기여할 것이다.

측벽 밀링에서 공구 변형 및 형상 정밀도 (Tool Deflection and Geometrical Accuracy in Side Wall Milling)

  • 류시형;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1811-1815
    • /
    • 2003
  • Investigated is the relationship between tool deflection and geometrical accuracy in side wall machining. Form error is predicted directly from the tool deflection without surface generation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error, and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacture. This study contributes to real time surface shape estimation and cutting process planning for the improvement of geometrical accuracy.

  • PDF

후방압출공정에서 치수정밀도 향상을 위한 초기소재형상 결정 (Determination of Initial Billet Shape to improve Dimension Accuracy in Backdward Extruded Cups)

  • 김호창
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.196-200
    • /
    • 1996
  • In general, cylinderical types of billet are use in the backward extrusion. It is difficult to obtain homogenious wall thickness by the backward extrusion using these. It is gradually increased that improving the accuracyand reducing the post machining of the final products. In manufacturing cup shaped parts by backward extrusion, it is very important to design optimal initial billet or preform. These can improve the accuracy of final products and remove the post machining processes. In this study, the influence of final parts geometry by the shape of initial billet as non machined types are discussed.

  • PDF

정밀정형 냉간단조 기어성형을 위한 소재처리와 다이설계 (Billet Treatment and Die Design for Net-Shape Forming of Gear by Cold Forging)

  • 강경주;박훈재;윤주철;김정;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.87-90
    • /
    • 2004
  • In this paper, net-shape forming of an automobile gear is investigated. Barrel, a component of automobile start motor, is adopted as a net-shape forming. In order to accomplish the goal of net-shape forming without cutting of tooth and cam after forming, forming ability is raised through billet treatment and die design. As a technique of billet treatment spheroidizing annealing of billet to get low hardness and molybdenum disulphide coating to get low contact friction between billet and die is carried out. One of critical points of die design, fillet radii variation of tooth of die is applied to get smooth surface of barrel after cold forging. As a measurement of tooth accuracy, distance between two pins and lead-tooth alignments are investigated. Cam profile accuracy is checked with a 3D measuring instrument. Results obtained from the tests revealed reasonable result with respect to design goal. By these results, the paper shows that reasonable results can be obtained by billet treatment and die design for net-shape forming.

  • PDF

5축가공기를 활용한 내면 형상 가공용 최적 앵글헤드의 개발 (Development of the Optimized Angle Head for Internal Shape Machining Using Five-Axis Machine Tool)

  • 황종대;김재현;조영태;정윤교;고해주
    • 한국기계가공학회지
    • /
    • 제14권1호
    • /
    • pp.123-129
    • /
    • 2015
  • In general, recent critical studies of five-axis machine have tended to center on the question of effective machining to realize complex shape parts. However, the hydrostatic bearing and journal bearing, both of which are involved in the complex process of dividing the processing of internal precision-shape machining, must be optimized. Although the angle head is designed to machine the internal shape as it approaches the inner diameter of the work piece, research on the angle head in five-axis machining has received only minimal attention in domestic industries. In this study, an angle head which is optimized for effective internal shape machining is developed. In pursuit of this purpose, 3D and 2D designs of the angle head for five-axis machining are devised. Reliability is secured through static performance tests and machining accuracy evaluations of the angle head in keeping with the machining accuracy standard of 0.2mm for hydrostatic bearings.

금형보정 모듈을 이용한 초고강도강 자동차부품용 프레스금형의 자동보정 (Automatic Tool Compensation for an UHSS Automotive Component Using a Compensation Module)

  • 이정흠;김세호
    • 소성∙가공
    • /
    • 제25권2호
    • /
    • pp.109-115
    • /
    • 2016
  • In the current study, automatic tool compensation is accomplished by using a finite element stamping analysis for a center roof rail made of UHSS in order to satisfy the specifications for shape accuracy. The initial blank shape is calculated from a finite element inverse analysis and potential forming defects such as tearing and wrinkling are determined by the finite element stamping analysis based on the initial tool shape. The blank shape is optimized to meet the shape requirements of the final product with the stamping analysis, and die compensation is determined with the information about springback. The specifications for shape accuracy were successfully achieved by the proposed die compensation scheme using the finite element stamping analysis. The current study demonstrates that the compensation tendency is similar when the proposed scheme is used or when the compensation is performed by trial and error in the press-shop. This similarity verifies that the automatic compensation scheme can be used effectively in the first stage of tool design especially for components made from UHSS.