• Title/Summary/Keyword: Shallow-water equations

Search Result 172, Processing Time 0.025 seconds

Application of the Level Set Method for Free Surface Modeling (자유수면의 모의를 위한 레블셑V 기법의 적용)

  • Lee, Hae-Gyun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.451-455
    • /
    • 2010
  • Hydraulics usually deals with flows with free surface. When the surface curvature is small, the assumption of hydrostatic pressure distribution is enough. However, in the case, when the curvature is big, the non-hydrostatic pressure distribution should be taken into account and the Navier-Stokes equations should be employed instead of the depth-averaged shallow water equations. For the simulation of two immiscible fluids with different characteristics (e.g. water and air, water and oil), the level set method is selected for this purpose. The developed model is applied to classical dam break problem and the computational results are compared with the experimental data. The effectiveness of the developed model is confirmed.

Finite Volume Method for Two-Dimensional Unsteady Flow in Open Channel (開水路에서의 2次元 不定流 解析를 위한 有限體積法)

  • Lee, Jin-Hee;Kim, Kyung-Tak;Sim, Myung-Pil
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.173-184
    • /
    • 1996
  • In this study, a two-dimensional shallow-water equation was used to develop the mathematical model for computing water levels and flow distribution. In the discretization equations, based on the finite volume method (FVM), the third order Runge-Kutta method and the third order upwind scheme were introduced to handle the unsteady and vconvective terms in the governing equations. To determine the accuracy of the developed model, it was applied to the rectangular horizontal channel in a frictionless flow. The water depth and velocity obtained by the numerical model were found to agree closely with the exact solution. The model was also applied to the rectangular channel with both the symmetric and the non symmetric constriction. The velocity distribution of the flow and the propagation of the flood wave were simulated and the results well described the flow characteristics.

  • PDF

Prediction of Ultimate Scour Potentials in a Shallow Plunge Pool

  • Son, Kwang-Ik
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.1-11
    • /
    • 1995
  • A plunge pool is often employed as an energy-dissipating device at the end of a spillway or a pipe culvert. A jet from spillways or pipes frequently generates a scour hole which threaten the stability of the hydraulic structure. Existing scour prediction formulas of plunge pool of spillways or pipe culverts give a wide range of scour depths, and it is, therefore, difficult to accurately predict those scour depths. In this study, a new experimental method and new sour prediction formulas under submerged circular jet for large bed materials with shallow tailwater depths were developed. A major variable, which was not used in previous scour prediction equations, was the ratio of jet size to bed material size. In this study, jet momentum acting on a bed particle and jet diffustion theory were employed to derive scour prediction formulas. Four theoretical formulas were suggested for the two regions of jet diffusion, i.e., the region of flow establishment and the region of established flow. The semi-theoretically developed scour prediction formulas showed close agreement with laboratory experiments performed on movable bed made of large spherical particles.

  • PDF

Numerical Simulation of Convection-dominated Flow Using SU/PG Scheme (SU/PG 기법을 이용한 이송이 지배적인 흐름 수치모의)

  • Song, Chang Geun;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3B
    • /
    • pp.175-183
    • /
    • 2012
  • In this study, Galerkin scheme and SU/PG scheme of Petrov-Galerkin family were applied to the shallow water equations and a finite element model for shallow water flow was developed. Numerical simulations were conducted in several flumes with convection-dominated flow condition. Flow simulation of channel with slender structure in the water course revealed that Galerkin and SU/PG schemes showed similar results under very low Fr number and Re number condition. However, when the Fr number increased up to 1.58, Galerkin scheme did not converge while SU/PG scheme produced stable solutions after 5 iterations by Newton-Raphson method. For the transcritical flow simulation in diverging channel, the present model predicted the hydraulic jump accurately in terms of the jump location, the depth slope, and the flow depth after jump, and the numerical results showed good agreements with the hydraulic experiments carried out by Khalifa(1980). In the oblique hydraulic jump simulation, in which convection-dominated supercritical flow (Fr=2.74) evolves, Galerkin scheme blew up just after the first iteration of the initial time step. However, SU/PG scheme captured the boundary of oblique hydraulic jump accurately without numerical oscillation. The maximum errors quantified with exact solutions were less than 0.2% in water depth and velocity calculations, and thereby SU/PG scheme predicted the oblique hydraulic jump phenomena more accurately compared with the previous studies (Levin et al., 2006; Ricchiuto et al., 2007).

An Analysis of Hydraulic Characteristics in Sea Dike Closure Gap Using a Three Dimensional Numerical Model (3차원 수치모형을 이용한 방조제 끝막이 구간의 수리특성분석(수공))

  • 강민구;박승우;임상준
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.405-411
    • /
    • 2000
  • This study reviews qualitatively the flow characteristics around th tidal gap during seadike closures using a three-dimensional model for shallow water equations. The Princeton Ocean Model(POM) was adapted and applied to the Sihwa Seadike which was closed in 1994. The simulated flow patterns around the gap showed that tidal velocities increase with the cross-sectional area during ebb tide. The accelerated flow extended to wider zones passing the gap, and shock waves were generated. Vertical tidal velocity profiles were affected as the bottom scours developed beyond normal conditions.

  • PDF

An Analysis of Irrigation and Drainage Characteristics at Large-Sized Paddy Fields Using a Two-Dimensional Numerical Model (2차원 유한체적 수치모형을 이용한 대구획 논의 용배수 특성해석(관개배수 \circled2))

  • 박종민;박승우;강문성;강민구
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.162-168
    • /
    • 2000
  • A two-dimensional numerical model based on a finite volume method was formulated to solve the shallow water equations and applied for evaluating irrigation and drainage characteristics at large-sized paddy fields. Manning roughness coefficient was calibrated using the observed inundating depths at drainage tests and used for validating the model with the results from irrigation and drainage test. The simulated results were in good agreement with the observed inundating depths.

  • PDF

Computation of the Bow Deck Design Pressure against the Green Water Impact (Green Water 충격에 대비한 선수갑판 설계압력의 산출)

  • Kim, Yong Jig;Shin, Ki-Seok;Lee, Seung-Chul;Ha, Youngrok;Hong, Sa Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.343-351
    • /
    • 2019
  • Green water impact may sometimes cause some structure damages on ship's bow deck. Prediction of proper design pressure against the green water impact is an essential task to prevent the possible damages on bow deck. This paper presents a computational method of the bow deck's design pressure against the green water impact. Large heave and pitch motions of ship are calculated by the time domain nonlinear strip method. Green water flow and pressure on bow deck are simulated by the predictor-corrector second kind upstream finite difference method. This green water simulation method is based on the shallow water wave equations expanded for moving bottom conditions. For various kind of ships such as container ship, VLCC, oil tanker and bulk carrier, the green water design pressures on bow deck are computed and discussed. Also, the obtained results of design pressure on bow deck are compared with those of the classification society rules and discussed.

Active Dispersion-Correction Scheme of 2-D Finite Element Model for Simulation of Tsunami Propagation (지진해일 전파 수치모의를 위한 2차원 유한요소모형의 능동적 분산보정기법)

  • Yoon Sung Bum;Lim Chae Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • For the simulation of tsunami propagation an active dispersion-correction two-dimensional finite element model has been developed based on a shallow-water wave equation. This model employs an arbitrary triangular mesh and an explicit time integration scheme. However, the physical dispersion effects as included in the Boussinesq equations can be taken into account in the computation. The validity of the dispersion-correction scheme developed in this study is verified through the comparison of numerical solutions calculated using the new scheme with analytical ones considering dispersion effect of waves. As a result, the present model is shown to be considerably accurate.

Numerical Analysis on the Development of an Undularbore (Undular Bore의 발생과정에 관한 수치 해석)

  • Bea, Heon-Meen;Kim, In-Chull
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.2
    • /
    • pp.31-35
    • /
    • 1986
  • A bore is a transition between different uniform flows of water. If a long wave of elevation travels in shallow water it steepens and forms a bore. The bore is undular if the change in surface elevation of the wave is less than 0.28 of the original depth of water. This paper describes the growth of an undular bore from a long wave which forms a gentle transition between a uniform flow and still water. A physical account of its development is followed by the results of numerical calculations. Finite-difference approximations are used in the partial differential equations of motion. For undular bores, numerical calculations show that (i) the relationship between relative elevation and relative velocity given by long wave theory is approached for an undular bore, (ii) the amplitude of first crest of an undular bore approaches a finite limit approximately at an exponential rate, and (iii) the distance between the first two crests increases without bound, approximately logarithmically.

  • PDF

Calculation of overtopping discharge with time-dependent aspects of an embankment failure (시간에 따른 제방붕괴 양상을 고려한 월류량 산정)

  • Kim, Hyung-Jun;Kim, Jong-Ho;Jang, Won-Jae;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.69-78
    • /
    • 2007
  • In this study, a time-dependent aspect of an embankment failure is considered to simulate a flood inundation map and calculate overtopping discharge induced by an embankment failure. A numerical model has been developed by solving the two dimensional nonlinear shallow water equations with a finite volume method on unstructured grids. To analyze a Riemann problem, the HLLC approximate Riemann solver and the Weighted Averaged Flux method are employed by using a TVD limiter and the source term treatment is also employed by using the operator splitting method. Firstly, the numerical model is applied to a dam break problem and a sloping seawall. Obtained numerical results show good agreements with experimental data. Secondly, the model is applied to a flow induced by an embankment failure by assuming that the width and elevation of embankment are varied with time-dependent functions. As a result of the comparison with each numerical overtopping discharge, established flood inundation discharges in the previous studies are overestimated than the result of the present numerical model.