• Title/Summary/Keyword: Shallow depth

Search Result 1,027, Processing Time 0.033 seconds

Effects of Artificial Substrate Type, Soil Depth, and Drainage Type on the Growth of Sedum sarmentosum Grown in a Shallow Green Rooftop System (저토심 옥상녹화 시스템에서 돌나물(Sedum sarmentosum)의 생육에 대한 인공배지 종류, 토심, 그리고 배수 형태의 효과)

  • 허근영;김인혜;강호철
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.2
    • /
    • pp.102-112
    • /
    • 2003
  • This study was carried out to research and develop a shallow green rooftop system which would require low maintenance and therefore could be used for existing rooftops. To achieve these goals, the conceptual model was induced by past studies and the experimental systems were deduced from the conceptual model. On the growth of Sedum sarmentosum grown in these rooftop systems, the effects of artificial substrate type, soil depth, and drainage type were investigated from 3 April to 11 October 2002. Artificial substrates were an alone type and a blending type. The alone type was an artificial substrate formulated by blending crushed porous glass with bark(v/v, 6:4). The blending type was formulated by blending the alone type with loam(v/v, 1:1). Soil depths were 5cm, loom, and 15cm. Drainage types were a reservoir-drainage type and a drainage type. The reservoir-drainage type could keep water and drain excessive water at the same time. The drainage type could drain excessive water but could not keep water. Covering area, total fresh and dry weight, visual quality, and water content per 1g dry matter were measured. All the variables were analyzed by correlation analysis and factor analysis. The results of the study are summarized as follows. The growth increment was higher in the blending type than in the alone type, the highest in loom soil depth and higher in the reservoir-drainage type than in the drainage type. The growth quality was higher in the blending type than in the alone type, the highest in l0cm soil depth, and higher in the drainage type than in the reservoir-drainage type. In consideration of the permissible load on the existing rooftops and the effects of the treatments on the growth increment and quality, the system should adopt the blending type in artificial substrate types, 5~10cm in soil depths, and the drainage type in drainage types. This system will be well-suited to the growth of Sedum sarmentosum, and when the artificial substrate was in field capacity, the weight will be 75~115kg/$m^2$.

Estimation of maneuvering characteristic of training ship Baek-Kyung according to water depth (수심에 따른 실습선 백경호의 조종성능 추정)

  • Chun-Ki LEE;Kyung-Jin RYU;Yoo-Won LEE;Su-Hyung KIM
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.3
    • /
    • pp.261-263
    • /
    • 2023
  • Recently, universities of fisheries and institutions related to fisheries are actively carrying out a project to build new fisheries training ships. These new fisheries training ships are significantly larger in size and longer in length than the previous ships. In addition, these new ships basically have space that can accommodate more than 100 crew and passenger. On the other hand, they are excluded from IMO maneuverability evaluation since the size of these ships are still less than 100 m in length (LBP). These results have had an impact on the study of maneuverability of fishing vessels including the fisheries training ships. Against these backgrounds, the authors conducted a study to estimate the maneuvering characteristics of fisheries training ship Baek-Kyung according to depth in order to prepare a maneuvering characteristic index that enables the large fisheries training ships to navigate more safely using a modified empirical formula. It was confirmed that the maneuvering characteristics of Baek-Kyung changed significantly as the values of the hydrodynamic force coefficients changed as the water depth gradually decreased from around 1.5 (approx. 8 m in depth) of the ratio of the water depth to the ship draft. The results of this study will not only help navigators understand the maneuvering characteristics of Baek-Kyung, but also serve as an indicator when navigating in shallow water. In addition, the accumulation of these results will serve as a basis for future study on maneuverability of fishing vessel types.

Study of Ship Squat for KVLCC2 in Shallow Water (KVLCC2 선형의 천수영역에서의 자세 변화에 대한 연구)

  • Yun, Kunhang;Park, Kyurin;Park, ByoungJae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.539-547
    • /
    • 2014
  • Ship squat is a well known phenomenon, which means an additional sinkage and a change of trim when a ship sails in shallow water. As a series of ship squat study, a HPMM(Horizontal Planar Motion Mechanism) test of KVLCC2 model ship to measure a sinkage and a trim in shallow water was conducted. Additionally a CFD(Computational Fluid Dynamics) analysis was carried out to simulate fluid flows around the ship surface. A change in ship speed, drift angle at three depth conditions(H/T = 1.2, 1.5 & 2.0) is considered for comparing these results. As a result, an increase of the ship speed and the drift angle caused an increase in ship squat in EFD(Experimental Fluid Dynamics), and created a lower pressure on the ship bottom area in CFD. Lastly the sinkage results of KVLCC2 by EFD and CFD are compared to results by three empirical formulas. The tendency of sinkage by EFD and CFD is similar to the results of empirical formulas.

A Novel Scheme to Depth-averaged Model for Analyzing Shallow-water Flows over Discontinuous Topography (불연속 지형을 지나는 천수 흐름의 해석을 위한 수심적분 모형에 대한 새로운 기법)

  • Hwang, Seung-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1237-1246
    • /
    • 2015
  • A novel technique was proposed to calculate fluxes accurately by separation of flow area into a part of step face which is dominated by flow resistance of it and an upper part which is relatively less affected by the step face in analyzing shallow-water flows over discontinuous topography. This technique gives fairly good agreement with exact solutions, 3D simulations, and experimental results. It has been possible to directly analyze shallow-water flows over discontinuous topography by the technique developed in this study. It is expected to apply the developed technique to accurate evaluation of overflows over weirs or retaining walls (riverside roads) and areas flooded by the inundation in the city covered in discontinuous topography.

New High-performance Supporting System of Shallow Tunnel in Soil (저토피 구간의 신개념 고성능 터널지보시스템에 대한 연구)

  • Kim, Sang-Hwan;Yun, Seung-Gi
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.11-21
    • /
    • 2009
  • This paper presents a new high-performance supporting system of the shallow tunnel. In order to perform this research the mechanism of new supporting system is suggested and compared with the conventional existing supporting system. It is found that the new supporting system as pre-support system has several advantages such as improvement of ground before tunnel excavation and increment of capacity of the tunnel support. The construction procedures of this supporting system are also reviewed. In addition, the numerical simulation is carried out to evaluate the new supporting system. It is found that the new high-performance supporting system is very applicable in shallow depth tunnel such as portal area, tunnel in soil and weak zone, and so on.

Safety Assessment to Construction Position of Constructed Steel Structures under Declinating Earth Pressure (편토압을 받는 파형강판 구조물의 시공위치별 안전성 평가)

  • Lee, Sang-Hyun;Lim, Heui-Dae
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • The corrugated steel plate structures is applied to the construction of mountain tunnel portal part with shallow depth, the tunnel on the outskirts of urban areas and ecology move passage. In this study, A finite element method is used for research the behavior of corrugated steel plate structures due to construction position under declinating earth pressure and excavation depth. A finite element method were performed varying construction position(10, 15, 20 and 25m) from slope and excavation depth from surface. The hoop thrust and moment, displacement of corrugated steel plate subjected to construction position and excavation depth is determined from a finite element method. From results of finite element method, it was found that the increase of thrust and the decrease of displacement as the amount of distance increase from slope with construction position. But the thrust and moment, displacement has not different value with excavation depth.

Experimental study on the ground subsidence due to the excavation of a shallow tunnel (경사지반에서 얕은터널의 굴착에 따른 지표침하에 대한 실험적 연구)

  • Park, Chan Hyuk;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.761-778
    • /
    • 2017
  • The need of the underground space for the infrastructures in urban area is increasing, and especially the demand for shallow tunnels increased drastically. It is very important that the shallow tunnel in the urban area should fulfill not only its own safety conditions but also the safety condition for the adjacent structures and the surrounding sub-structure. Most of the studies on the behavior of shallow tunnels concentrated only on their behaviors due to the local deformation of the tunnel, such as tunnel crown or tunnel sidewall. However, few studies have been performed for the behavior of the shallow tunnel due to the deformation of the entire tunnel. Therefore, in this study the behavior of the surrounding ground and the stability caused by deformation of the whole tunnel were studied. For that purpose, model tests were performed for the various ground surface slopes and the cover depth of the tunnel. The model tunnel (width 300 mm, height 200 mm) could be simulationally deformed in the vertical and horizontal direction. The model ground was built by using carbon rods of three types (4 mm, 6 mm, 8 mm), in various surface slopes and cover depth of the tunnel. The subsidence of ground surface, the load on the tunnel crown and the sidewall, and the transferred load near tunnel were measured. As results, the ground surface subsided above the tunnel, and its amount decreased as the distance from the tunnel increased. The influence of a tunnel ceased in a certain distance from the tunnel. At the inclined ground surface, the wider subsidence has been occurred. The loads on the crown and the sidewall were clearly visible, but there was no effect of the surface slope at a certain depth. The load transfer on the adjacent ground was larger when the cover depth (on the horizontal surface) was lager. The higher the level (on the inclined surface), the wider and smaller it appeared. On the shallow tunnel under inclined surface, the transfer of the ambient load on the tunnel sidewall (low side) was clearly visible.

Towards remote sensing of sediment thickness and depth to bedrock in shallow seawater using airborne TEM (항공 TEM 을 이용한 천해지역에서의 퇴적층 두께 및 기반암 심도 원격탐사에 관하여)

  • Vrbancich, Julian;Fullagar, Peter K.
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.77-88
    • /
    • 2007
  • Following a successful bathymetric mapping demonstration in a previous study, the potential of airborne EM for seafloor characterisation has been investigated. The sediment thickness inferred from 1D inversion of helicopter-borne time-domain electromagnetic (TEM) data has been compared with estimates based on marine seismic studies. Generally, the two estimates of sediment thickness, and hence depth to resistive bedrock, were in reasonable agreement when the seawater was ${\sim}20\;m$ deep and the sediment was less than ${\sim}40\;m$ thick. Inversion of noisy synthetic data showed that recovered models closely resemble the true models, even when the starting model is dissimilar to the true model, in keeping with the uniqueness theorem for EM soundings. The standard deviations associated with shallow seawater depths inferred from noisy synthetic data are about ${\pm}5\;%$ of depth, comparable with the errors of approximately ${\pm}1\;m$ arising during inversion of real data. The corresponding uncertainty in depth-to-bedrock estimates, based on synthetic data inversion, is of order of ${\pm}10\;%$. The mean inverted depths of both seawater and sediment inferred from noisy synthetic data are accurate to ${\sim}1\;m$, illustrating the improvement in accuracy resulting from stacking. It is concluded that a carefully calibrated airborne TEM system has potential for surveying sediment thickness and bedrock topography, and for characterising seafloor resistivity in shallow coastal waters.