• Title/Summary/Keyword: Shallow Water Waves

Search Result 194, Processing Time 0.027 seconds

Generation and Growth of Long Ocean Waves along the West Coast of Korea in March 2007 (2007년 3월 한국 서해안에 발생한 해양장파의 형성과 성장과정)

  • Choi, Byoung-Ju;Park, Yong-Woo;Kwon, Kyung-Man
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.453-466
    • /
    • 2008
  • In order to examine the generation mechanism of long ocean waves along the west coast of Korea and to understand the amplification process of the long ocean waves, sea level, atmospheric pressure and wind data observed every minute from 2007 March 29 to 2007 April 1 were analyzed and onedimensional numerical ocean model experiments were performed. An atmospheric pressure jump propagated southeastward from Backryungdo to Yeonggwang along the west coast of Korea with speed of $13{\sim}27\;m/s$ between 2007 March 30 23:00 and 2007 April 1 1:30. Average magnitude of pressure jump was 4.2 hPa. As a moving atmospheric jump propagated from north to south along the coast, long ocean waves were generated and the sea level abnormally rose or fell at Anheung, Kunsan, Wido and Yeonggwang. Average amplitude of sea level rise (or fall) was about 113.6 cm. In a one-dimensional numerical ocean model, nonlinear shallow water equations were numerically integrated and a moving atmospheric pressure jump with traveling speed of 24 m/s was used as an external force. While the atmospheric pressure jump travels over 60 m depth ocean, a long ocean wave is generated. Because the propagation speed of the atmospheric jump is almost equal to that of the long ocean wave, Proudman resonance occurs and the long ocean wave amplifies. As the atmospheric pressure jump moves into the coastal area shallower than 60 m, the speed of the long ocean wave decreases and Proudman resonance effect decreases. However, the amplitude of the long ocean wave increases and wave length becomes shorter because of shoaling effect. When the long ocean wave hits the land boundary, amplitude of the long ocean wave drastically amplifies due to reflection. Data analysis and numerical experiments suggest that the southeastward propagation of an atmospheric pressure jump over the shallow ocean, which is a necessary condition for Proudaman resonance, generated the long ocean waves along the west coast of Korea on 2007 March 31 and the ocean waves amplified due to shoaling effect in the coastal area and reflection at the shore.

An Ocean Wave Simulation Method Using TMA Model (TMA 모델을 이용한 해양파 시뮬레이션 방법)

  • Lee Nam-Kyung;Baek Nakhoon;Kim Ku Jin;Ryu Kwan Woo
    • The KIPS Transactions:PartA
    • /
    • v.12A no.4 s.94
    • /
    • pp.327-332
    • /
    • 2005
  • In the field of computer graphics, we have several research results to display the ocean waves on the screen, while we still not have a complete solution yet. Though ocean waves are constructed from a variety of sources, the dominant one is the surface gravity wave, which is generated by the gravity and the wind. In this Paper, we Present a real-time surface gravity wave simulation method, derived from a precise ocean wave model in the oceanography. There are research results based on the Pierson-Moskowitz(PM) model[1], which assumes infinite depth of water and thus shows some mismatches in the case of shallow seas. In this paper, we started from the Texel, Marsen and Arsloe(TMA) model[2], which is a more precise wave model and thus can be used to display more realistic ocean waves. We derived its implementation model for the graphics applications and our prototype implementation shows about 30 frames per second on the Intel Pentium 4 1.6GHz-based personal computer. Our major contributions to the computer graphics area ill be (1) providing more user-controllable parameters to finally generate various wave shapes and (2) the improvement on the expression power of waves even in the shallow seas.

Rossby Waves and Beta Gyre Associated with Tropical Cyclone-scale Barotropic Vortex on the Sphere

  • Nam, Ye-Jin;Cheong, Hyeong-Bin
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.344-355
    • /
    • 2020
  • Tropical cyclone scale vortices and associated Rossby waves were investigated numerically using high-resolution barotropic models on the global domain. The equations of the barotropic model were discretized using the spectral transform method with the spherical harmonics function as orthogonal basis. The initial condition of the vortex was specified as an axisymmetric flow in the gradient wind balance, and four types of basic zonal states were employed. Vortex tracks showed similar patterns as those on the beta-plane but exhibited more eastward displacement as they moved northward. The zonal-mean flow appeared to control not only the west-east translation but also the meridional translation of the vortex. Such a meridional influence was revealed to be associated with the beta gyre and the Rossby wave, which are formed around the vortex due to the beta effect. In the case of the basic zonal state of climatological mean, the meridional translation speed reached the maximum value when the vortex underwent recurving.

Steady Drift Forces on Very Large Offshore Structures Supported by Multiple Floating Bodies in Waves(I) (다수의 부체로 지지된 초대형 해양구조물에 작용하는 정상표류력(I))

  • H.J. Jo;J.S. Goo;S.Y. Hong;C.H. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.123-135
    • /
    • 1995
  • A numerical procedure is described for predicting steady drift forces an multiple three-dimensional bodies of arbitrary shape freely floating in waves. The developed numerical approach is based on combination of a three-dimensional source distribution method, wave interaction theory art the far-field method using momentum theory. Numerical results are compared with the experimental or numerical ones, which are obtained in the literature, of steady drift forces on 33(3 by 11) floating composite vertical cylinders in waves. The results of comparison confirmed the validity of the proposed approach. Finally, the interaction effects are examined in the case of an array of 40(4 by 10) freely floating rectangular bodies in shallow water.

  • PDF

Higher Harmonic Generation by Nonlinear Interaction between Monochromatic Waves and a Horizontal Plate (규칙파와 수평판의 비선형 상호작용에 의한 고차 조화항 발생)

  • Koh, Hyeok-Jun;Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.484-491
    • /
    • 2007
  • Numerical experiments using a numerical wave tank have been performed to verier the nonlinear interaction between monochromatic waves and a submerged horizontal plate. As a model for numerical wave tank, we used a higher-order Boundary Element Method(BEM) based on fully nonlinear potential flow theory and CADMAS-SURF for solving Navier Stokes equations and exact free surface conditions. Both nonlinear models are able to predict the higher harmonic generation in the shallow water region over a submerged horizontal plate. CADMAS-SURF, which involves the viscous effect, can evaluate the higher harmonic generation by flow separation and vortices at the each ends of plate. The comparison of reflection and transmission coefficients with experimental results(Patarapanich and Cheong, 1989) at different lengths and submergence depths of a horizontal plate are presented with a good agreement. It is found that the transfer of energy from the incident fundamental waves to higher harmonics becomes larger as the submergence depth ratio decreases and the length ratio increases.

Coastal Currents Driven by Irregular Waves (불규칙파에 의한 연안류)

  • Yoo, Dong Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.151-158
    • /
    • 1990
  • Various factors may contribute on the mixing processes in the surf zone formed by irregular waves. The turbulence motion driven by wave breaking may be one of the major causes, the effect due to spatial variation on current velocity be a secondary one, and the additional process may result from the irregular superposition of radiation stresses or wave breaking dissipation incurred by random breaking waves in a broadened surf zone. In the present study a numerical model of spectral waves and induced currents was developed using a superposition technique with ${\kappa}-{\varepsilon}$ closure for mixing process and applied to a field situation of longshore current generated by spectral waves on a uniform beach. It was found from the application that the surf-zone mixing processes formed by irregular waves can be well described by using ${\kappa}-{\varepsilon}$ equations if the source of ${\kappa}$ is properly represented. The nonlinear energy transfer was also found to have some influence on the velocity profile of longshore current particularly in very shallow water region near coast.

  • PDF

An Example of Internal Wave Detection in North Coastal Waters of Cheju Island Using a SAR Image (SAR를 이용한 제주도 북부해역에서의 내부파 관측예)

  • Kim, Tae-Rim;Won, Joong-Sun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.18-24
    • /
    • 1999
  • The satellite image acquired by RADARSAT SAR on August 15, 1996 reveals internal waves in north coastal waters of Cheju Island. It is indicated from the image data, the tidal elevation data, and the bottom topography data, the internal waves seem to be generated by interaction between shallow bottom and tidal currents travelling in the stratified water in the summer time during the tidal changeovers from ebb to flood. The internal waves generated in such condition show patterns of trains of solitons. Probable amplitude of observed solitons is calculated using estimation of the soliton wave length from SAR image data and K-dV equation. Detection of the internal waves is very significant not only to military strategist for underwater maneuvers such as operation of submarines, but also to physical and biological oceanographers. Temporal and spatial variation of the internal waves are needed to be measured by simultaneous in-situ field study together with SAR to examine the nature of these internal waves.

  • PDF

Nonlinear Transformation of Long Waves at a Bottom Step (해저단에서의 장파의 비선형 변형)

  • Mrichina, Nina R.;Pelinovsky, Efim N.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.3
    • /
    • pp.161-167
    • /
    • 1992
  • We consider the preparation of long finite amplitude nondispersive waves over a step bottom between two regions of finite different depths. Two dimensional motion is assumed. with the wave crests parallel to the step, and irrotational flow in the inviscid fluid is considered. To describe the transformation of finite amplitude waves we use the finite-amplitude shallow-water equations, the conditions of mass flow conservation and pressure continuity at the cut above the step in Riemann's variables. The equations define four families of curves-characteristics on which the values of the Riemann's invariants remain constant and a system of two nonlinear equations that relates the amplitudes of incident reflected and transmitted waves. The system obtained is difficult to analyze in common form. Thus we consider some special cases having practical usage for tsunami waves. The results obtained are compared with the long wave theory and significant nonlinear effects are found even for quite small amplitude waves.

  • PDF

The Study of the Beach Change into Structures (인공 구조물에 의한 해빈변형 연구)

  • Kim, Hyo Seob;Jung, Byung Soon;Oh, Byung Cheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1445-1449
    • /
    • 2004
  • Even though there can be a relative long-term or short-term change of their size in natural beaches due to various changes of sea condition such as the location, weather condition (wind and rain) and sea water flow, the budget of deposits in a specific area is generally regarded to be in a condition of equilibrium in terms of technology. However, as coasts are developed by many different kinds of ways (such as construction of sea walls and estuarine, dredging for gathering the aggregate and shore protection construction for establishing a structure) and sources of silt and gravel from rivers are decreased in balanced beaches, the beaches are in a serious danger of lack of sand and sand sources which are one of the maul elements to consist of them. Many swimming beaches in East Sea are directly exposed by waves generated and transmitted from outer seas. On the other hand, the Song-Do sandy beach which is this study's target area has a great condition for beach development because it locates the deepest place that is relatively shallow in Young-Il Man and there is big energy decrease given to waves from outer seas while the waves are reaching the Song-Do beach. Nevertheless, it is considered that artificial condition changes such as dredging for site extension by POSCO, getting straight of Hyoung-San Gang river flow and extension of Po-Hang harbor caused the sand loss of the beach. Therefore, some recovery plans of Song-Do sandy beach will be presented in this study and they will be compared and examined each other by numerical modeling experiment. After that, the best plan will be recommended.

  • PDF

Water wave reflection over shear currents and dredged multi-arrayed trenches (외부 흐름과 준설된 다열 함몰지형에 의한 파랑의 반사)

  • Cho, Yong-Sik;Lee, Kwang-Jun;Lee, Jun-Whan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.871-876
    • /
    • 2020
  • Understanding the wave characteristics near the outlet of coastal power plants for cooling water in the vicinity of the dredged areas is critically important for the construction and operation of the plants. By Employing the eigenfunction expansion method, in this study, we analyzed the reflection of monochromatic water waves over (1) shear currents near the outlet and (2) multi-arrayed trenches representing dredged areas. We firstly optimized the number of grids expressing shear currents and the number of evanescent modes based on a convergence test. We then analyzed the sensitivity of the reflection coefficients depending on (1) magnitude of shear currents, (2) width of shear currents, (3) a distance between adjacent trenches, and (4) a number of trenches. The results showed that the reflection coefficient was more sensitive to the number of trenches and the distance between trenches than the velocity of shear currents and the width of shear currents. We also found that even the effect of shear currents is relatively small, the effect is not negligible in a relative water depth from shallow to near shallow water waves (0.01 < kh ≦ 0.70).