• Title/Summary/Keyword: Sewer flow

Search Result 197, Processing Time 0.025 seconds

Optimal Sizing of Intercepting Flow for Reducing Pollution Loads Caused by CSOs (CSOs 저감을 위한 차집관거 최적화 시스템)

  • Kong, Min-Keun;Bae, Ki-Hyun;Kang, Woo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.418-424
    • /
    • 2004
  • An abrupt high pollution loads in combined sewer systems is believed to be caused by first flushing actions and the resuspension of sediments deposited in sewers. Therefore, pollution loads in each flow regulator have a different tendency. This systems control intercepting flow in each flow regulator using water quality and water level. A desired quantity of intercepting flow was adjusted and the necessary slide position for a constant intercepting is calculated by Optimization programming. This systems make it possible to reduce pollution loads caused by CSOs to water body, may be alternative for the stable operation of STP through improving water quality to STP.

Basic Study on Mechanism of Cave-in in Road through Laboratory Model Tests (실내모형시험을 통한 도로함몰 매커니즘에 대한 기초적 연구)

  • Kweon, Gichul;Kim, Sanglok;Hong, Seokwoo
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.11-19
    • /
    • 2016
  • PURPOSES : This study identifies the causes and the mechanism of the occurrence of underground cavities. METHODS : A case study on cave-in and a series of model tests with a small soil chamber were conducted. RESULTS : A hypothesis about the mechanism of the cave-in in road was established, and the basic influencing factors on underground cavity expansion were identified. CONCLUSIONS : It was found that the characteristics of shear strength of soil and direction of water flow had a larger influence on cavity formation and expansion than the characteristics of internal erosion. In addition, large cavities suddenly expanded when cavities were caused owing to breakage of buried sewer pipe.

A by-pass rainwater penetration sewer system for urban flooding mitigation (도시침수 저감을 위한 by-pass 빗물침투성 우수관거)

  • Lee, Bum-Sub;Ko, Keon-Ho;Kang, Ho-Yeong;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.799-807
    • /
    • 2016
  • The aim of this study is to determine and propose the by-pass rainwater sewer system in order to reduce the urban floodplain from the locality heavy rain every year during the dry season and the sinkholes in the city as well as the shortage of groundwaters due to extreme hot weather condition and urban heat island phenomenon. Heavy rain occurs more than the years of heavy rainfall probability, comparison between the place where uses the existing pipes and connect the sewer system with by-pass rain permeability and without expanding sewer pipe replacement at intersection of Gangnam station 3.07 ha at Gangnam-gu, Seoul Metropolitan area, it indicates that average of 27 million KRW (44%) maintenance cost savings and maintain existing sewer system without any other countermeasures. For the city flooded reduction, by-pass rainwater permeable rainwater pipe multiplying the probability the number of years during summer season and increase the water flow capacity during spring and fall when a small amount of rain that, it also contribute to the total amount of underground water secured through the by-pass penetration.

A Study on Process Optimization for CSOs Application of Horizontal Flow Filtration Technology (수평흐름식 여과기술의 CSOs 적용을 위한 공정 최적화 연구)

  • Kim, Jae-Hak;Yang, Jeong-Ha;Lee, Young-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.56-63
    • /
    • 2018
  • The management of Combined Sewer Overflows(CSOs) and Separated Sewer Overflows(SSOs) discharge directly to the effluent system in an untreated state, which occurs when the facility capacity is exceeded due to heavy rain, has become an important issue in recent years as the heavy rain becomes a regular phenomenon. Despite the continuous development of filtration technology, targeting densely populated urban areas, CSOs are rarely applied. Therefore, this study was carried out to optimize the process to apply CSOs in a pilot-scale horizontal flow filtration system with a rope-type synthetic fiber. The research was carried out in two steps: a preliminary study using artificial samples and a field study using sewage. In the preliminary study using an artificial sample, head loss of the filter media itself was analyzed to be approximately 1.1cm, and the head loss was increased by approximately 0.1cm as the linear velocity was increased by 10m/hr. In addition, the SS removal efficiency was stable at 81.4%, the filtration duration was maintained for more than 6 hours, and the average recovery rate of 98% was obtained by air backwashing only. In the on-site evaluation using sewage, the filtration duration was approximately 2 hours and the average removal efficiency of 83.9% was obtained when belt screen (over 450 mesh) was applied as a pre-treatment process to prevent the premature clogging of filter media. To apply the filtration process to CSOs and SSOs, it was concluded that the combination with the pre-treatment process was important to reinforce the hydraulic dimension for the stable maintain of operation period, rather than efficiency. Compared to the dry season, the quality of incoming sewage was lower in the rainy season, which was attributed to the characteristics of the drainage area with higher sanitary sewerage. In addition, the difference in removal efficiency according to the influent quality of the wet season and dry season was small.

Development of Storm Sewer Numerical Model for Simulation of Coastal Urban Inundation due to Storm Surge and Rainfall (폭풍해일과 강우에 의한 해안 도시 범람 수치모의를 위한 우수관망 수치모형의 개발)

  • Yoon, Sung Bum;Lee, Jaehwang;Kim, Gun Hyeong;Song, Ji Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.292-299
    • /
    • 2014
  • Since most of the researches on the coastal inundation due to typhoons have considered only storm surges, an additional inundation due to rainfall has been neglected. In general, typhoons are natural disasters being accompanied by the rainfall. Thus, it is essential to consider the effect of rainfall in the numerical simulation of coastal inundation due to storm surges. Because the rainwater is discharged to the sea through the storm sewer system, it should be included in the numerical simulation of storm surges to obtain reasonable results. In this study an algorithm that can deal with the effects of rainfall and sewer system is developed and combined with a conventional storm surge numerical model. To test the present numerical model various numerical simulations are conducted using the simplified topography for the cases including the inundation due to rainfall, the drainage of rainwater, the backflow of sea water, and the increase of sea water level due to drainage of rainwater. As a result, it is confirmed that the basic performance of the present model is satisfactory for various flow situations.

The Flow and Water Quality Estimation of CSOs Using EC Data and Civil Engineering Research Model (전기전도도 및 토연모델을 이용한 CSOs 유량 및 수질 추정)

  • Choi, Wonsuk;Chung, Chulkwon;Nam, Jungyoon;Koo, Wonseok;Jung, Kwangsu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.3
    • /
    • pp.178-184
    • /
    • 2014
  • In this study, monitoring method which is more economic and easier in maintenance comparing to existing monitoring system was scrutinized for application to sewer intercepting chamber of 10.2 ha basin area by estimating CSOs (Combined Sewer Overflows) quantity and quality with 2 rainfall events using electrical conductivity data and civil research model. The result showed that determination coefficient of flow estimation by EC (Electrical Conductivity) dilution ratio and observed data was over 0.86 for all cases and the accuracy of estimation was improved from 0.5 to 0.8 for determination coefficient ($R^2$) and from 54.1% to 68.5% for accumulation frequency of relative error by considering antecedent dry days and rainfall duration. CSOs water quality estimation results by civil research model showed that determination coefficients were 0.64~0.97 for BOD and 0.70~0.95 for SS.

Evaluating appropriateness of the design methodology for urban sewer system (도시 하수관거 설계 방법의 적정성 평가)

  • Park, Ju-Hyun;Kim, Seon-Ho;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.6
    • /
    • pp.411-420
    • /
    • 2019
  • The objective of this study is to evaluate the appropriateness of methodology for designing urban sewer system using a rational method-based model, Makesw and an urban runoff model, SWMM. The Gunja basin was selected as a study area and precipitation, runoff, vegetation, soil, imperviousness data were used to estimate floods. The appropriateness of methodology was evaluated based on comparison analysis between floods estimated from Makesw and SWMM. The comparison analysis was conducted between floods estimated from Makesw and SWMM, which were simulated using design rainfall and measured rainfall from past inundation events. The comparison results showed that in the case of design rainfall, the rational method-based floods were larger than that based on SWMM in all main lines. However in several branch lines, the rational method-based floods were smaller than thoes based on SWMM. In addition, for the case of measured rainfall from past inundation events, it was easily to find the main and branch lines where the rational method-based floods were smaller than SWMM based ones. Especially, the lines where rational method-based floods were underestimated, were mostly main, $1^{st}$, $2^{nd}$ lines. It was concluded that the rational method-based results were not conservative. Based on rational method (steady flow analysis) and SWMM (unsteady flow analysis), the more conservative results the method provides, the more highly it is recommended to use in designing an urban sewer system.

The Design and Implementation of Manhole Management System Using Wireless Communication (무선 통신을 이용한 맨홀 관리시스템 설계 및 구현)

  • Lee, Sangyoon;Lee, Yougkwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.2
    • /
    • pp.53-61
    • /
    • 2017
  • How to manage manhole is to estimate the part without observation and maintain the sewer. To get the information about current flow rate, visiting and measuring specific manhole is positively necessary. Also, there are some problems that accurate measurement of flow rate is difficult and obtaining the information about real-time whole flow rate is impossible. This thesis will easily grasp the accurate location and type of manhole to solve the problems, and provide the manhole system conveying information through direct radio communication with a manhole cover to renewal information of manhole properly. Besides, it intends to save the information about management of waterworks, maintenance of facilities, data for flow rate, and structure of manhole. Using these, it is supposed to offer how to handle manhole. Thus, this thesis delivers the information to manhole and into central servers directly without wire and provides the system and management method for effective maintenance of manhole.

An Experimental Study for Drainage Capacity Increment at Surcharged Manholes with a 90° Bend (과부하 90° 접합맨홀의 배수능력 증대에 관한 실험 연구)

  • Kim, Jung Soo;Song, Ju Il;Yoon, Sei Eui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.447-458
    • /
    • 2009
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban areas. Therefore, it is necessary to analyze head loss at manholes, especially in case of surcharged flow. Hydraulic experiments were conducted with three cases. Case A is to test whether the shapes of the manholes influence head loss coefficients. Case B and C were proposed to further reduce head losses by improving the manhole hydraulic efficiency. In case B, the joining part of the pipe at both shapes of manholes is shifted from central part to side part. The test in case C is to check the average head loss coefficient by installing the side benching in square manhole, based on shifted joining part model. The average head loss coefficient for circular and square manhole on case A was 1.6. This did not show much difference of the head loss coefficients in spite of the discharge variation in this case. However, case B and C show large difference between head loss coefficients due to the strong oscillation of water surface and the horizontal swirl motion. The circular and square manholes in case B reduced the head loss by 30% and 6% than ones in case A, respectively. The average head loss coefficient for circular manhole in case B was 1.1. Case C reduced average loss coefficients of the square manhole in case A from 1.6 to 1.1. Accordingly, the circular manhole in case B and the square manhole in case C showed the effective way to reduce the head loss. These head loss coefficients could be available to apply to the urban sewer system with surcharged flow.

Characterization of Infiltration Analyses Using Long-Term Monitoring Flow Data (장기 모니터링 자료를 활용한 침입수 산정 방법론별 특성 분석)

  • Lee, Jaehyun;Kim, Insop;Oh, Jeill;Park, Chulhwi
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.411-418
    • /
    • 2009
  • The analysis of characteristics of water use evaluation and nighttime domestic flow evaluation was performed by using result from flow monitoring and surveying water supply records and nighttime domestic flow for a year. The analysis of correlations showed that, for both sites, the infiltration ratio and wastewater flow have shown a good relationship with high correlation factor and that the calculation of wastewater flow was highly affected by monthly rainfall depth as well as number of rain days. From this result, it was concluded that the measurement of infiltration should be performed when the rainfall does not significantly affect the sewer flow. Also, it is notable that each value of calculated using method for infiltration evaluation are not comparable to each other, but independent methods. In selecting of evaluation method for infiltration, therefore, a great emphasis should be imposed to the character of area and the seasonal factor in order to select optimal one. It is desirable way for evaluating infiltration and reduction ratio using result from an optimal method.