• Title/Summary/Keyword: Sewer Rehabilitation

Search Result 44, Processing Time 0.026 seconds

A Study on Improvement of Inflow/Infiltration Computation and Application Method in Sewer Rehabilitation Project (하수관거정비사업의 침입수/유입수 산정 및 활용방법 개선방안에 관한 연구)

  • Kim, Jong-Oh;Jeong, Dong-Gi;An, Dae-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.33-45
    • /
    • 2014
  • In this study, current sewer infiltration/Inflow(I/I) computation and application method was examined about improvement and adequacy relating to the main issues raised by the field for practitioners. The results of review about infiltration calculation method were considered to be in need of improvement at 'standards of minimum sewage calculation'. Furthermore, the results of review about I/I application method were considered to be in need of improvement at 'standards of seasonal infiltration application' and 'the relative decrease in the Annual evaluation standards'. In addition, annual I/I analysis at JC County for the four years(2009~2012) in respect of operation flow and rainfall data was conducted. The result of annual infiltration analysis, compared average daily sewage generated average infiltration rate was found in 21.95 %, infiltration by unit was found in $0.31m^3/day/cm/km$ and $0.12m^3/day/day$, respectively. The result of annual inflow analysis, average rainfall - Inflow equations was found $y=5.499{\times}$($R^2$ 0.793), and the average Inflow quantity by sewer extension was predicted to $0.66m^3/mm-km$.

A combined sewer design method using tractive force considering wastewater flow on non-rainy days and its application for improvement methods of sewer (청천시 오수량을 고려한 합류식 하수도 소류력 설계법과 이를 활용한 하수관거 개보수방안)

  • Ji, Hyon Wook;Yoo, Sung Soo;Song, Homyeon;Kang, Jeong-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • When domestic sewage and rainwater runoff are discharged into a single sewer pipe, it is called a "combined sewer system." The sewage design standards in Korea specify the flow velocity based only on the volume of rainfall; therefore, sedimentation occurs on non-rainy days owing to the reduced flow rate and velocity. This sedimentation reduces the discharge capacity, causes unpleasant odors, and exacerbates the problem of combined sewer overflow concentration. To address this problem, the amount of sewage on non-rainy days, not just the volume of rainfall, should also be considered. There are various theories on sedimentation in sewer movement. This study introduces a self-cleansing velocity based on tractive force theory. By applying a self-cleansing velocity equivalent to the critical shear stress of a sand particle, sedimentation can be reduced on non-rainy days. The amount of sewage changes according to the water use pattern of citizens. The design hourly maximum wastewater flow was considered as a representative value, and the velocity of this flow should be more than the self-cleansing velocity. This design method requires a steeper gradient than existing design criteria. Therefore, the existing sewer pipelines need to be improved and repaired accordingly. In this study, five types of improvement and repair methods that can maximize the use of existing pipelines and minimize the depth of excavation are proposed. The key technologies utilized are trenchless sewer rehabilitation and complex cross-section pipes. Trenchless sewer rehabilitation is a popular sewage repair method. However, it is complex because the cross-section pipes do not have a universal design and require continuous research and development. In an old metropolis with a combined sewer system, it is difficult to carry out excavation work; hence, the methods presented in this study may be useful in the future.

Factor analysis on infiltration using correlations (상관성 분석을 통한 침입수 발생 영향인자 분석)

  • Ryu, Jae-Na;Oh, Je-Ill;Choi, Ick-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.185-192
    • /
    • 2011
  • Pearson's correlation was used to determine relations between infiltration and affecting factors using flow monitoring data measured in 24 areas with different characteristics. Factors showed relatively high correlations than others were indexed to determine infiltration rates of the study area. Among 8 factors(service area, sewer length, sewer diameter, multiplier of sewer length and diameter, number of manholes, population, number of properties, number of households) tested, the multiplier of sewer length and diameter, the number of population and the number of household in each service area indicated higher correlation coefficient(>0.8) than others. The goodness of fitness of linear regressions between infiltration and the factors followed the order: sewer length and diameter(0.68)> population(0.65)> number of household(0.60). Infiltration rates calculated by the multiplier of sewer length and diameter, the number of population and the number of household in each service area were 0.046~1.0396 $m^{3}/d{\cdot}mm-km$, 0.0917~1.7355 $m^{3}/capita{\cdot}d$, 0.196~4.529 $m^{3}/household {\cdot}d$ respectively. After sewerage rehabilitation work of the area, the infiltration rates calculated by above factors with high correlations are expected to be used for comparing effectiveness of the work once they are estimated under the same flow measuring conditions.

Estimation of sewer deterioration by Weibull distribution function (와이블 분포함수를 이용한 하수관로 노후도 추정)

  • Kang, Byongjun;Yoo, Soonyu;Park, Kyoohong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.4
    • /
    • pp.251-258
    • /
    • 2020
  • Sewer deterioration models are needed to forecast the remaining life expectancy of sewer networks by assessing their conditions. In this study, the serious defect (or condition state 3) occurrence probability, at which sewer rehabilitation program should be implemented, was evaluated using four probability distribution functions such as normal, lognormal, exponential, and Weibull distribution. A sample of 252 km of CCTV-inspected sewer pipe data in city Z was collected in the first place. Then the effective data (284 sewer sections of 8.15 km) with reliable information were extracted and classified into 3 groups considering the sub-catchment area, sewer material, and sewer pipe size. Anderson-Darling test was conducted to select the most fitted probability distribution of sewer defect occurrence as Weibull distribution. The shape parameters (β) and scale parameters (η) of Weibull distribution were estimated from the data set of 3 classified groups, including standard errors, 95% confidence intervals, and log-likelihood values. The plot of probability density function and cumulative distribution function were obtained using the estimated parameter values, which could be used to indicate the quantitative level of risk on occurrence of CS3. It was estimated that sewer data group 1, group 2, and group 3 has CS3 occurrence probability exceeding 50% at 13th-year, 11th-year, and 16th-year after the installation, respectively. For every data groups, the time exceeding the CS3 occurrence probability of 90% was also predicted to be 27th- to 30th-year after the installation.

Analysis on the result of I/I calculation by the exiting method and the standardized maual method (하수관거 I/I(침입수/유입수) 분석방법에 따른 산정 결과 비교 -기존 보정방법과 환경부 표준 매뉴얼에 의한 방법-)

  • An, Byung-Mo;Song, Ho-Myun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.213-221
    • /
    • 2011
  • The purpose of sewer system is to separate rain water from sewage water. Through this, it is possible to prevent the flood and preserve public water territory. For the past few years, many problems of the sewer system have been solved by the execution of sewer rehabilitation project. However, they still exist in sewer system caused by I/I, which are divided into infiltration and inflow. Infiltration means the rain water and underground water that infiltrate through breakage point on pipes, inflow means the water that flows in through misconnection on pipes. This study shows how the I/I calculation has changed according to the new standardized manual and identifies the I/I difference between the new calculation and the existing one. Through the analysis on the two calculation methods we examined the appropriacy of the new method by comparing it to the old one. The result points out that the new standardized manual is more appropriate than the old in aspect of objectivity and reproducibility(establish standardization), rationality(alteration of inflow unit).

Comparative Analysis between GDP Deflator Method and Index Adjustment Rate Method on BTL Sewer Rehabilitation Projects in Jeju (제주도 내 하수관거정비 BTL사업의 GDP 디플레이터 방식과 지수조정률 방식과의 비교 분석)

  • Yang, Du-Suck;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.217-227
    • /
    • 2015
  • This study conducted case studies in order to suggest the improvement of GDP (Gross Domestic Product) deflator method which is adopted on calculating fluctuation rate on BTL (Build-Transfer-Lease) sewer rehabilitation projects in Jeju. As a result, because GDP deflator method calculates fluctuation rate by each quarterly, the fluctuation rate of GDP deflator method is higher than it of index adjustment rate method. And GDP deflator method cannot reflect real price because of applying fixed index in whole construction cost for calculating fluctuation rate. Especially, the notification day - the base point influences fluctuation rate and fluctuation amount strongly in GDP deflator method.

Evaluation of Inundation Risk Ranking for Urban Sewer Systems using PROMETHEE (PROMETHEE를 이용한 도시 하수관거시스템 침수위험순위 평가)

  • Song, Yang-Ho;Lee, Jung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.388-398
    • /
    • 2012
  • In this study, Entropy method and PROMETHEE(Preference Ranking organization METHod for Enrichment Evaluations) which is one of the multi criteria decision making methods are applied to estimate the relative inundation risk ranking of the urban sewer systems. Then, the evaluation factors were selected considering two main items to estimate the inundation risk using Entropy and PROMETHEE. In the first item considering topographical and environmental factor, average elevation, average slope, width of area, population, density of conduit were selected as the detailed factors of first item which have influence of the overflow occurrence and damage scale in urban sewer system. And, the relative reliability of sewer network was considered as the second item which can quantify the inundation appearance. Then, the reliability is estimated considering the number of overflow nodes and overflow volume simultaneously. Therefore, the suggested inundation risk evaluation method can be used as the evaluation index for sewer networks and contribute to decision making for the sewer rehabilitation policy.

Analysis on Effectiveness of Sewer Rehabilitation Project and Study on Improvement of Fixed Flow Meters (하수관거정비사업의 사업효과 분석 및 유량계 설치 개선방안에 관한 연구)

  • An, Dae Hoon;Kim, Jong Oh
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.461-469
    • /
    • 2013
  • Even though a sewer rehabilitation BTL project has been executed throughout the nation with the input of a significant amount of budget, the overall review on effectiveness of the project is insufficient. And disputes over effectiveness of the project and of the employment of I/I indexes for evaluation of the project are continued due to reliable issues of flux data which has been measured after completion of certain projects and excessive amounts of I/I. Thus, this study has reviewed effectiveness of the project, current status and problems of the installation of fixed flow meters as well as countermeasures based on 15 projects subject to the operation performance evaluation after the completion of the project. The review on operation of the project has revealed that sewer rehabilitation BTL projects are significantly effective and highly effective on reducing a rate of infiltration water. The review on the employment of proper countermeasures for main issues revealed during the investigation on the installation and operation of fixed flow meters has shown that such countermeasures could result in securing more reliable flux data.