• 제목/요약/키워드: Sewage treatment

검색결과 1,188건 처리시간 0.034초

흡수성 바이오필터 시스템의 오수처리 특성 및 효율 (Sewage Treatment Characteristics and Efficiencies of Absorbent Biofilter Systems)

  • 전기설;권순국;김성배
    • 한국농공학회논문집
    • /
    • 제46권5호
    • /
    • pp.131-139
    • /
    • 2004
  • In this study, on-site sewage treatment tests were conducted using the Absorbent Biofilter System (ABS) under different hydraulic loading rates to examine its treatment characteristics and efficiencies and to determine its feasibility as a small on-site sewage treatment system in a rural area. Results showed that the removal rates of BOD and SS were satisfactory at hydraulic loading rates of 100~150 cm/day, meeting the Korean effluent water quality standards for the riparian zone (10 mg/L). In the case of nutrients (N, P), however, the system did not perform well, necessitating further improvement for nutrient removal. A comparative analysis indicated that as a small on-site sewage treatment system, the ABS would be more suitable than other treatment systems in terms of performance stability, maintenance requirement, and cost-effectiveness and could be applied as an alternative treatment system in Korean rural areas.

하수처리장 에너지 자립화를 위한 하수 에너지 잠재력 회수 기술 (Recovering the Energy Potential of Sewage as Approach to Energy Self-Sufficient Sewage Treatment)

  • 배효관
    • 한국물환경학회지
    • /
    • 제34권1호
    • /
    • pp.121-131
    • /
    • 2018
  • Domestic sewage treatment plants (STPs) consume about 0.5 % of total electric energy produced annually, which is equivalent to 207.7 billion Korean won per year. To minimize the energy consumption and as a way of mitigating the depletion of energy sources, the sewage treatment strategy should be improved to the level of "energy positive". The core processes for the energy positive sewage treatment include A-stage for energy recovery and B-stage for energy-efficient nitrogen removal. The integrated process is known as the A/B-process. In A-stage, chemically enhanced primary treatment (CEPT) or high rate activated sludge (HRAS) processes can be utilized by modifying the primary settling in the first stage of sewage treatment. CEPT utilizes chemical coagulation and flocculation, while HRAS applies returned activated sludge for the efficient recovery of organic contents. The two processes showed organic recovery efficiencies ranging from 60 to 70 %. At a given recovery efficiency of 80 %, 17.3 % of energy potential ($1,398kJ/m^3$) is recovered through the anaerobic digestion and combustion of methane. Besides, anaerobic membrane bioreactor (AnMBR) can recover 85% of organic contents and generate $1,580kJ/m^3$ from the sewage. The recovered energy is equal to the amount of energy consumption by sewage treatment equipped with anaerobic ammonium oxidation (ANAMMOX)-based B-stage, $810{\sim}1,620kJ/m^3$. Therefore, it is possible to upgrade STPs as efficient as energy neutral. However, additional novel technologies, such as, fuel cell and co-digestion, should be applied to achieve "energy positive" sewage treatment.

저탄소 녹색도시 조성을 위한 신도시 하수처리시설의 에너지 자립 효과 분석 (Effect Analysis on Self-supporting Energy of Newtown Sewage Treatment Facility for Low-carbon Green City)

  • 안수정;현경학;김종엽;정연규
    • 상하수도학회지
    • /
    • 제24권6호
    • /
    • pp.683-690
    • /
    • 2010
  • Renewable and unutilized energy (biogas power generation, wind power, solar, small hydro-power, sewage heat source, etc.) seems to be suitable to install for the sewage treatment facilities. There are 357 sewage treatment plants in 2007. 17 plants among these have been operating for self-supporting energy by using solar power, small hydro-power and biogas in 2008. Newly built sewage treatment plant of 96,000 $m^3$/day for a newtown is expected to get up to energy consumption of 10 GWh/yr. If solar energy, small hydro-power and biogas-equipments were applied to the new treatment plant, self-supporting energy of the new sewage treatment plant will get up to 56.1%. As a results, about 2,379ton $CO_2$/yr $CO_2$ emission reduction can be expected by using renewable energy. These efforts for self-supporting energy will lead sewage treatment plant to new energy recycle center.

마을하수도 운영실태 및 개선방안 (A study on the management status of public small-scale sewage treatment facilities and the improvement)

  • 신대윤;배철호
    • 환경위생공학
    • /
    • 제23권4호
    • /
    • pp.55-64
    • /
    • 2008
  • In this study, the management and improvement of public small-scale sewage treatment facilities was investigated. In order to improve the effective management of the operation of small-scale sewage treatment facilities, treatment methods and the problems associated with sewage treatment were carefully addressed based on the data and literature. The investigation results showed that sewer pipes in rural areas should be repaired to prevent sewage from leaking and small-scale operations should be required to have effective management for pollutant loads less than 50%. Also, new methods should be developed for low concentrations of sewage. A law associated with FRP treatment facilities should be established and local governments need to supervise these operations to avoid insufficient and faulty construction. It is recommended that new facilities are built with advanced treatment techniques when the old facility can not comply with nitrogen and phosphorous discharge limits. Moreover, the study shows that nutrient and coliform treatment efficiency improves when abandoned facilities are renovated with the installation of nitrification/denitrification and disinfection processes or another advanced process.

하수처리장 신재생에너지 설치 사례 연구를 통한 에너지 절감 방안 (Case Studies of Energy-Saving Method for Renewable Energy Installation in Sewage Treatment plant)

  • 윤종원;김주영;최창규
    • 조명전기설비학회논문지
    • /
    • 제28권4호
    • /
    • pp.42-48
    • /
    • 2014
  • Sewage treatment facilities can purify sewage enough to be send to river or sea water, that discharged from human life and industrial activities. In the sewage treatment process, we can get large amount of by-product energy resources and materials such as heat of sewage, digester gas and purified water etc., it can be utilized by applying various technologies thereby we can reduce energy consumption in the process. In this paper, it was analyzed using the data collected from the operational case study for the energy savings effect that can be obtained when using the digester gas, one of the by-product materials of sewage treatment process, for electric power generation. Cost of 623million won is an annual reduction of 4,032MWh corresponding 9% of the annual electricity consumption of the sewage treatment plant, such an alternative power generation using digester gas was proposed in this paper has been verified the feasibility of the proposed reduction of energy.

충청남도 마을하수처리시설의 최적 설치방안 (Alternatives for Optimum Installation of Rural Sewage Treatment Facilities in Chungchongnam-do Province)

  • 이상진;정종관;임봉수;허재영
    • 상하수도학회지
    • /
    • 제19권4호
    • /
    • pp.462-472
    • /
    • 2005
  • This study was carried out to suggest the plans for installation of rural sewage treatment facilities through the analysis of these facilities installed in Chungchongnam-do Province. About 5% of all installation was carried out by the department of wastewater and related environment problems and the other case was carried out by the department of construction or residence. In wastewater caused by 250 and 300 persons, facilities capacity do not exceed about $50m^3/d$, caused by 2,500 and 3,000 persons, $500m^3/d$. Advanced sewage treatment process were first needed in the discharge area where affected the water environment greatly. However, in carrying out the water quality pollutant of the total amount management system in the other areas, they should be driven only over the scale of pollutant quota object facilities standard. Rural sewage must be included in the special accounts according to the regulations of local government, and sewage treatment cost should be collected to manage. Installation type uses integrating joint treatment method in case the distance among villages is short or one treatment facility independently.

구미시 하수처리 방류수가 하류 하천 영양염류에 미치는 영향: 부하량 비교 (Effects of Gumi City Sewage Treatment Effluent in the Downstream Nutrient Matter: Comparison of Daily Loading)

  • 성진욱;이상팔;이재균;박제철
    • 한국환경과학회지
    • /
    • 제22권12호
    • /
    • pp.1643-1650
    • /
    • 2013
  • This study investigated water quality of effluents and stream from the sewage treatment plants located at Gumi Complex 4, Gumi, and Wonpyeong in Gumi. Downstream region was found to increase the concentration of nutrients for sewage treatment plant effluent. Both phosphorus and nitrogen were accounted most as soluble form. In particular, the high ratio of dissolved effluent of sewage treatment plants were investigated. In the streams, Phosphorus concentration was high during rainy season and nitrogen concentration was high in the dry season. Sewage treatment plant effluent was relatively less microbial activity and nutrient concentrations were higher in the winter. TN/TP ratio was the highest in the upstream region and the lowest in the sewage treatment plant effluent. The effect of the nutrient matter from a discharge of a sewage treatment plant on rivers varied depending on the size of the river and the treatment plant. However, the influence of the concentration was greater than that of flowrate. Sewage treatment plant effluent loads phosphorus, nitrogen accounted for 8% and 6% respectively at the point N3 of the Nakdong river.

자료관리(資料管理) Library의 개발(開發)을 통한 하수처리장(下水處理場)의 효율적(效率的)인 유지관리(維持管理) (The Effective Maintenance of Sewage Treatment Plant with Development of Database Management Library)

  • 이재기;이현직;최석근;박경렬;노병철
    • 대한공간정보학회지
    • /
    • 제5권1호
    • /
    • pp.103-118
    • /
    • 1997
  • 최근 하수처리업무는 도시인구의 증가 및 하수처리기준의 강화로 인해 대부분의 도시에서 하수처리 시설의 신설 및 증설문제가 대두되고 있다. 본 연구는 하수처리시설의 증설에 대비하여 중요시설의 유지관리에 필수적인 도형 및 속성정보의 효율적인 관리를 위한 자료관리 Library 개발하는데 목적이 있다. 본 연구에서는 하수처리장 유지관리에 필요한 도형 및 속성정보의 자료관리 Library를 개발하였으며, 청주시환경사업소를 대상으로 하수처리시설의 유지관리업무의 현황을 분석하고 데이터베이스 설계를 수행하여 이를 토대로 하수처리장 유지관리에 적합한 시스템을 개발하였다. 하수처리장 유지관리시스템은 도형정보와 속성정보를 조작하기 위한 기본기능과 하수처리 관련업무를 처리하기 위한 응용기능으로 나누어 개발하였으며, 본 연구를 통해 개발된 시스템이 하수처리장의 효율적인 유지관리에 기여할 수 있음을 알 수 있었다.

  • PDF

소형 식물·미생물 정화조 시스템 개발을 위한 기초 실험 (A Basic Experiment for a Small Sewage Treatment System Using Aquatic Plants and Microbes)

  • 이은희;이인숙;정동선
    • 한국환경복원기술학회지
    • /
    • 제5권4호
    • /
    • pp.31-38
    • /
    • 2002
  • The rate of sewage treatment in South Korea was 68% in the late 1999. Sewage treatment is mostly made near big cities such as Seoul and Busan, and it is little in rural areas. Wastewater from households goes to streams directly without treatment in rural areas and pollutes streams. It is necessary to improve the progress for treatment of nutrients such as N and P which cause eutrophication in streams and lakes, because sewage treatment system in South Korea focuses on treatment of basic organic matters. Therefore it will contribute to improve discharged water quality if small sewage treatment systems by aquatic plants and microbes are introduced to rural areas where are not connected to local sewage treatment facility. This experiment was conducted to find out the best way using aquatic plants and microbes to purify wastewater from households through individual sewage treatment system. Phragmites communis, Iris pseudoacorus, Acorus calamus var. angustatus, Typha orientalis and Oenanthe javanica were used for this experiment. BOD, COD, SS, T-N and T-P were analyzed following standard methods for wastewater. The result shows that wastewater was roughly purified through pebbles and sands, and highly purified through aquatic plants and microbes especially in T-N and T-P. Iris pseudoacorus is the most effective in reduction of COD and BOD level. This system will work even in winter when plants die because microbes will be still working.

하수처리장의 효율적인 Blower Control Logic 개발을 위한 유입수질 기반 공기공급량 적용 연구 (Application of the Proper Air Supply Amount Based on the Influent Water Quality for the Development of Efficient Blower Control Logic in Sewage Treatment Plants)

  • 여우석;김종규
    • 대한토목학회논문집
    • /
    • 제42권4호
    • /
    • pp.493-499
    • /
    • 2022
  • 하수처리장의 방류수 수질기준이 강화되고 있으며, 이에 따라 하수처리장 시설도 고도화되고 있다. 또한 하수처리장의 방류수질은 높은 수준으로 유지되어야 하며, 이에 따라 효율적인 하수처리장 운영이 매우 중요한 이슈로 대두되고 있다. 본 연구에서는 하수처리장의 Blower Control Loigc 개발을 위해, 하수도 시설기준의 기본 송풍량 산정 방식을 기반으로 유입수질에 따른 필요 산소량 및 송풍량을 산정하였다. 본 연구를 통해 A 하수처리장의 실제 4월 수질 데이터를 적용하여 송풍량을 산정한 결과, 평균적으로 약 12 %의 송풍량이 절감이 될 수 있다는 것을 확인하였다. 본 연구에서 산정한 결과에 따라 Blower Control Logic을 개발하여 실제 하수처리장에 적용하게 된다면, 유입수질을 기반으로 송풍량 제어가 가능함에 따라 운전자의 경험에 의존하고 있는 기존의 하수처리 운영방식에서 벗어나 하수처리장 자율제어가 가능할 것으로 판단된다. 또한, 송풍량 및 전력비 절감이 이루어진 효율적인 하수처리장 운영을 기대 할 수 있으며, 이를 통해 불필요한 에너지 및 탄소 절감에 기여할 수 있을 것이라고 판단된다.