• Title/Summary/Keyword: Sewage Treatment Plants

Search Result 307, Processing Time 0.027 seconds

A Study on Treatment Measures of Carcass Disposal Site Leachate into the Livestock Manure and Sewage Treatment Facilities using NIER-MASS program (NIER-MASS 프로그램을 이용한 가축매립지 침출수 연계처리 방안 연구)

  • Jeong, Dong-Hwan;Lee, Chulgu;Shin, Jinsoo;Kim, Hyunwoo;Yoon, Soohyang;Kim, Yongseok;Yu, Soonju;Kim, Shinjo
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.725-734
    • /
    • 2012
  • The outbreak of foot and mouth disease in November 2010 raised many social, economic and environmental issues and water contaminations by leachate from carcass disposal sites particularly emerged as a serious concern. In oder to efficiently handle these problems, a critical method is required to transport leachate to livestock manure and sewage treatment plants and purify it. This study aims to present the best applicable method to transport leachate from carcass disposal sites into livestock manure and sewage treatment facilities. We investigated the biological and chemical characteristics such as BOD, COD, SS, TN, TP and Total coliforms. Current conjugated treatments in livestock manure and sewage treatment plants was studied by surveying the operations of those facilities. The NIER-MASS(National Institute of Environmental Research - Mass Balance Evaluation System of Sewage Treatment Facilities) program was applied to present the best conjugated treatment method through estimating the maximum daily load to meet the water quality standards in effluent.

Advanced Wastewater Treatment-Natural Septic Method of Rural Housing sewage Using an Aquatic Plants (수생식물을 이용한 농촌주택 하수의 고도처리 자연정화법)

  • Shin, Banwoong;Bang, Seongtaek;Shin, Minchul;Lee, Sangeul
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.2 no.1
    • /
    • pp.89-100
    • /
    • 2000
  • Recently, according to the increase of population and rapid growth of industry, the amount of effluent pollutant has been rising in natural water. In these pollutant, nutrients such as nitrogen and phosphor are told that these evolve the odor, color and eutrophication in rural housing sewage and lake regulary. Many researches have been carried out to remove these nutrients from effluents and will have to be studied more deeply. Especially, because of the sewage of rural housing and livestock, environmental pollution raises serious problem in a rural community. This method is developed to solve the problem environmentally friendly. Using the natural energy(wasteheat, earthheat, solar engery) and the growth properties of aquatic plants are most efficient method to absorb the nutrients and denitrification and phosphor uptake.

  • PDF

Contemporary organic contamination levels in digested sewage sludge from treatment plants in Korea: (2) Non-alkylated Polycyclic Aromatic Hydrocarbons (우리나라 하수 및 폐수 처리 슬러지의 다환방향족탄화수소의 함량)

  • Lee Kang-Young;Chung Chang-Soo;Kim Young-Il;Lee Hyun-Kyung;Hong Gi-Hoon
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.413-425
    • /
    • 2005
  • The 16 priority PAHs (Polycyclic Aromatic Hydrocarbons) designated by US Environmental Protection Agency were analyzed for some digested sludges from wastewater treatment plants in Korea. PAHs are an important group of organic contaminants present in sewage sludge due to their persistence and toxic potential. PAHs were extracted from freeze-dried sludges using a methylene chloride-methanol (2:1) mixture in a soxhlet extractor. The extracts were cleaned-up by silica gel/alumina combination column and subsequently fed into gas chromatograph/mass spectrometer (GC/MS) for determining PAH contents. The sum of the 16 PAHs in the sewage sludge varied from 534.8 to $5754.5 {\cal}ug/{\cal}kg$, dry wt.. In the sewage sludge, phenanthrene appears as the most abundant PAHs, followed by naphthalene, pyrene, fluoranthene. Source of the investigated sewage sludges relatively predominated pyrogenic. PAHs levels of sewage sludges in Korea appeared to be lower than those in other countries.

The improvement of the operating process of sewage treatment plants in the upstream area of dam by MASS FLOWmodelling (MASS FLOW 모델링을 통한 댐상류지역의 공공하수처리시설 공정개선방안)

  • Lee, Hyunseop;Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.130-138
    • /
    • 2020
  • As of 2017, the sewerage penetration rate of Seoul and metropolitan cities is more than 90%, and the number of domestic sewage treatment plants increased by 25% from 3,064 in 2010 to 4,072 in 2017. Among them, sewage treatment plant operated by SBR system is 585, which is 17% higher than 2010. In order to improve the water quality of the water source and improve the operation of the small sewage facilities, the improvement of the process was studied by applying the modelling to 49 facilities of the sewage treatment plant in Andong Imha dam area with more than 500㎥/day 3 places and 46 places less than 500㎥/day. As an improvement plan for modelling, candidate data were derived by reviewing operation data for 5 years. 49 facilities are operated by 12 types of operating processes. Among them, 1 place mort than 500㎥/day with SBR method and 9 facilities with less than 500㎥/day were selected by dividing 46 sites into 3 types. As a result of applying modelling to more than 500㎥/day, it was possible to improve the quality of discharged water through SRT control and it was found that applying model to sites of small scale treatment plants can improve the removal efficiency of TP by up to 14.4%. As a result, the data of this study could be used to improve and improve the operation of sewage treatment plants and RCSTP(Rural Community Sewage Tratment Plant).

A Study on Strengthening Option of T-N Effluent Water Quality Standards of Sewage Treatment Plants (하수처리시설의 T-N 방류수 수질기준 강화방안에 관한 연구)

  • Kim, Ji Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.2
    • /
    • pp.216-225
    • /
    • 2018
  • Over the past 40 years, the public sector has continued to invest in the sewage treatment plants (STPs) in Korea. Currently, the domestic sewage treatment rate is over 90% with the enhancement of operating efficiency of the STPs, and water quality of major rivers has been continuously improved. However, COD and T-N indicators are stagnating or slightly worsening, and though advanced treatment facilities are installed in most of the STPs, there is a limit to the removal of nutrients. Since there are a lot of water pollution sources in the vicinity of the watershed because of high population density in Korea, it is essential to reduce the inflow of the nutrients in order to prevent the eutrophication of the rivers and lakes. While the effluent T-P standard in STPs has greatly strengthened since 2012, which results in the considerable investment for the improvement of treatment process in STPs for the last few years, it is necessary to strengthen the T-N standards, as the effluent standard of T-N has been maintained at 20 mg/L since 2002. In this study, based on the analysis of the effluent T-N standard status of major industrialized countries, and the domestic nitrogen load in public waters, the option of appropriate T-N standard level is reviewed, and the required investment costs and the effect of strengthening the standard are estimated.

Analysis of Proper Linked Treatment Load Using GPS-X Simulation (GPS-X 시뮬레이션을 이용한 적정 연계처리부하량 분석)

  • Kim, Sungji;Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.244-250
    • /
    • 2019
  • Due to the industrial development and population growth, it has recently been shown that there are many problems caused by the rinked treatment water in local goverments and sewage treatment plants. The rinked treatment water has a characteristic of low flow rate and high concentration unlike general sewage. These characteristics increase sewage treatment difficulty and sewage treatment fee of sewage treatment facilities. Among the many influencing factors that increase sewage treatment unit cost, 'linked treatment load/design inflow load (%)' was derived as the most correlated factor. Through the selection and modeling of sewage treatment plants, the excess scope of design discharge water quality was investigated under the conditions of temperature and the conditions of 'linked treatment load/design inflow load (%)' taking into account the effects of the four seasons. The study found that for TN, 'linked treatment load/design inflow load (%)' was 19.7%, 22.6%, 25.1%and 27.7%, respectively, under conditions of $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$ and $25^{\circ}C$. In case of TP, 'rinked treatment load/design inflow load (%)' was 10.7%, 12.2%, 15.6% and 17.5% at $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, and $25^{\circ}C$, respectively, under conditions of $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$ and $25^{\circ}C$.

Case Studies on the Electric Power Loss Reducing Methodology for Transformer Installation in Sewage Treatment Plant (하수처리장 변압기 설치사례 연구를 통한 전력손실 저감방안)

  • Kim, Chu-Young;Choi, Chang-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.70-77
    • /
    • 2011
  • Sewage treatment plants, consuming 1,756[GWh] which is 0.53[%] of national wide electricity consumption, is one of the electricity consuming facilites. At the research of electricity consumption and power quality analysis on sewage treatment plants, average utilization of transformer was less than 40[%] because peak load was very lower than its capacity due to excess capacity. So reduction of power loss can be achieved by transformer design optimization. The achievement in this research, is to meet reduction of power loss through optimizing the capacity and to improve as high efficiency-low loss transformer while the transformer is operating.

Verification of biological nitrogen removal program in sewage or wastewater treatment plants (${\cdot}$ 폐수처리장에서의 생물학적 질소제거 프로그램 검증)

  • Kim, Hee-Sun;Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2007
  • Based on the experiment results of laboratory scale modified anoxic-oxic process for leachate treatment, biological nitrogen removal program was verified in terms of SS, COD, and TN concentration. These measured water qualities concentration could be predicted by biological nitrogen removal program with $R^2$ of 0.994, 0.987, 0.990, respectively. No error was occurred between water qualities concentration and quite wide range of water qualities concentration (i.e., 50-4200 mg/L) during the modelling. Each unit and final effluent of simulated concentration was kept good relationship with that of measured concentration therefore this biological nitrogen removal program for sewage or wastewater treatment plants has good reliance.

Improvement of Sewerage Treatment System (하수도 업무추진체계 개선)

  • Lee, Chan-Hui
    • 수도
    • /
    • v.24 no.5 s.86
    • /
    • pp.5-15
    • /
    • 1997
  • This year the Ministry of Environment(MOE) made a fifth amendment to the Sewerage Act, which was enacted in August 1966. The first objective of this amendment is to introduce small public sewerage system that is designed to treat wastewater produced in rural areas. Before small public sewerage system was introduced to the Act through this amendment, only urban areas were covered by public sewerage system. Because small sewerage system was introduced, wastewater generated in urban areas as well as rural areas can now be treated by public sewage treatment plants. In addition to this, some authorities on sewerage affairs were moved from the MOE to local governments by this amendment in order to enhance the power and responsibility of local governments in relation to sewerage affairs. Also, this amendment enabled local governments to entrust the authority to establish and manage sewage treatment plants to private companies, and enabled the MOE to organize an advisory committee on sewerage to review economic and technical aspects ofsewage treatment plants. This amendment went into effect September 8, 1997.

  • PDF