• Title/Summary/Keyword: Severe Acute Respiratory Syndrome

Search Result 309, Processing Time 0.036 seconds

The impact of COVID-19 on the male genital tract: A qualitative literature review of sexual transmission and fertility implications

  • Verrienti, Pierangelo;Cito, Gianmartin;Maida, Fabrizio Di;Tellini, Riccardo;Cocci, Andrea;Minervini, Andrea;Natali, Alessandro
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.1
    • /
    • pp.9-15
    • /
    • 2022
  • The angiotensin-converting enzyme 2 receptor (ACE2) appears to be widely expressed in cells in the testes, predominantly in spermatogonia, Sertoli cells, and Leydig cells, and its co-expression with transmembrane protease serine 2 (TMPRSS2) is essential for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For this reason, the male reproductive system could be considered a potential target for SARS-CoV-2, as well as a possible reservoir of infection. However, to date, there is very little evidence about the presence of SARS-CoV-2 in semen and testicular samples. The aim of this paper was to review the current evidence regarding the impact of SARS-CoV-2 on male fertility and sexual health, with a particular focus on reproductive hormones, the presence of the virus in seminal fluid and testis, and its impact on fertility parameters. We found very limited evidence reporting the presence of SARS-CoV-2 in semen and testicular samples, and the impact of SARS-CoV-2 on reproductive hormones and fertility parameters is unclear. The quality of the examined studies was poor due to the small sample size and several selection biases, precluding definitive conclusions. Hence, future well-designed prospective studies are needed to assess the real impact of SARS-CoV-2 on male reproductive function.

The Design of Convergence Curriculum, the Historical Case of Medical Mission and the Research Initiative Outcome of Medicine and Theology (의학과 신학의 융합 교육과정 개발, 의료선교의 역사적 사례, 연구개발 성과에 관한 연구)

  • Son, Moon
    • Journal of Christian Education in Korea
    • /
    • v.65
    • /
    • pp.133-161
    • /
    • 2021
  • This study focuses on the vulnerability of our society and environment under the Covid-19 pandemic. The medical descriptions about severe acute respiratory syndrome coronavirus disease 2019 provide the serious manifestation of the SARS-CoV-2 virus and a new resilient hope of its vaccination. Moreover, with the perspective of feminist practical theology, the author explores a resilient possibility to reconstitute an ecological relationship between our society and environment. In addition, many people's depression in the time of Covid-19 is understood in the meaningful narrative of the relationship between integrity and despair to be stressed by Erikson in the perspective of Loder. Especially, this study focuses on the main stream of designing the convergence curriculum of medicine and theology to move toward the life wellbeing of community members, overcoming their difficult circumstances such as Covid-19.

Comparative genetic analyses of Korean bat coronaviruses with SARS-CoV and the newly emerged SARS-CoV-2

  • Na, Eun-Jee;Lee, Sook-Young;Kim, Hak Jun;Oem, Jae-Ku
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.12.1-12.11
    • /
    • 2021
  • Background: Bats have been considered natural reservoirs for several pathogenic human coronaviruses (CoVs) in the last two decades. Recently, a bat CoV was detected in the Republic of Korea; its entire genome was sequenced and reported to be genetically similar to that of the severe acute respiratory syndrome CoV (SARS-CoV). Objectives: The objective of this study was to compare the genetic sequences of SARS-CoV, SARS-CoV-2, and the two Korean bat CoV strains 16BO133 and B15-21, to estimate the likelihood of an interaction between the Korean bat CoVs and the human angiotensin-converting enzyme 2 (ACE2) receptor. Methods: The phylogenetic analysis was conducted with the maximum-likelihood (ML) method using MEGA 7 software. The Korean bat CoVs receptor binding domain (RBD) of the spike protein was analyzed by comparative homology modeling using the SWISS-MODEL server. The binding energies of the complexes were calculated using PRODIGY and MM/GBGA. Results: Phylogenetic analyses of the entire RNA-dependent RNA polymerase, spike regions, and the complete genome revealed that the Korean CoVs, along with SARS-CoV and SARS-CoV-2, belong to the subgenus Sarbecovirus, within BetaCoVs. However, the two Korean CoVs were distinct from SARS-CoV-2. Specifically, the spike gene of the Korean CoVs, which is involved in host infection, differed from that of SARS-CoV-2, showing only 66.8%-67.0% nucleotide homology and presented deletions within the RBD, particularly within regions critical for cross-species transmission and that mediate interaction with ACE2. Binding free energy calculation revealed that the binding affinity of Korean bat CoV RBD to hACE2 was drastically lower than that of SARS-CoV and SARS-CoV-2. Conclusions: These results suggest that Korean bat CoVs are unlikely to bind to the human ACE2 receptor.

Can Panax ginseng help control cytokine storm in COVID-19?

  • Choi, Jong Hee;Lee, Young Hyun;Kwon, Tae Woo;Ko, Seong-Gyu;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.337-347
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19) is currently a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 are directly associated with hyper-activation of innate immune response that excessively produce pro-inflammatory cytokines and induce cytokine storm, leading to multi-organ-failure and significant morbidity/mortality. Currently, several antiviral drugs such as Paxlovid (nirmatrelvir and ritonavir) and molnupiravir are authorized to treat mild to moderate COVID-19, however, there are still no drugs that can specifically fight against challenges of SARS-CoV-2 variants. Panax ginseng, a medicinal plant widely used for treating various conditions, might be appropriate for this need due to its anti-inflammatory/cytokine/viral activities, fewer side effects, and cost efficiency. To review Panax ginseng and its pharmacologically active-ingredients as potential phytopharmaceuticals for treating cytokine storm of COVID-19, articles that reporting its positive effects on the cytokine production were searched from academic databases. Experimental/clinical evidences for the effectiveness of Panax ginseng and its active-ingredients in preventing or mitigating cytokine storm, especially for the cascade of cytokine storm, suggest that they might be beneficial as an adjunct treatment for cytokine storm of COVID-19. This review may provide a new approach to discover specific medications using Panax ginseng to control cytokine storm of COVID-19.

SARS-CoV-2 IgG Antibody Seroprevalence in Children from the Amritsar District of Punjab

  • Kaur, Amandeep;Singh, Narinder;Singh, Kanwardeep;Sidhu, Shailpreet Kaur;Kaur, Harleen;Jain, Poonam;Kaur, Manmeet;Jairath, Mohan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.3
    • /
    • pp.173-178
    • /
    • 2022
  • The majority of the children experience milder coronavirus disease 2019 (COVID-19) symptoms. Children represent a significant source of community transmission. Children under 18 years of age account for an estimated 4.8% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections globally. However, no conclusive statements pertaining to the multi-fold aspects of the virus in children could be drawn due to the lower prevalence of pediatric cases. The present study was conducted to identify the indirect impact of SARS-CoV-2 infections on developing herd immunity among children in the age group 3 to 18 years by investigating their antibody levels. In the study, 240 children aged 3~18 years were recruited by the Department of Pediatrics, Government Medical College and Hospital, Amritsar, India, and quantification of the antibodies was performed at the Viral Research and Diagnostic Laboratory (VRDL), Government Medical College (GMC), Amritsar, India. Out of the 240 serum samples, 197 (82.08%) showed seropositivity, while 43 (17.92%) were seronegative. When stratified, it was observed that in the age group 3~6 years, 22.33% of children were found to have anti-SARS-CoV-2 antibodies while in the age groups 7~10 years, 11~14 years, and 15~18 years, respectively, 37.06%, 30.46%, and 10.15% were seropositive. Although there was seroconversion among children which was useful for predicting the next wave, no differences in seropositivity were observed between adults and children.

Guideline for the Management of Neonates Born to Mothers With COVID-19 (코로나19 감염 산모에서 출생한 신생아 관리 지침)

  • Jae Hong Choi ;Soo-Han Choi ;Do-Hyun Kim ;Yong-Sung Choi ;Ki Wook Yun
    • Pediatric Infection and Vaccine
    • /
    • v.29 no.3
    • /
    • pp.125-130
    • /
    • 2022
  • For the extended duration of the coronavirus disease 2019 (COVID-19) pandemic, reports emerged that mother-to-child transmission rates were low. However, the pandemic protocols including strict isolation, testing for severe acute respiratory syndrome coronavirus 2, and negative pressure isolation remained in Korea. Recently, the guideline for the management of neonates born to mothers with COVID-19 have been revised based on guidelines in other countries. Here, we introduce this newly developed guideline and review the foreign guidelines that were used for reference.

Estimation of the SARS-CoV-2 Virus Inactivation Time Using Spectral Ultraviolet Radiation (파장별 지표 자외선 복사량을 이용한 SARS-CoV-2 바이러스 비활성화 시간 추정 연구)

  • Park, Sun Ju;Lee, Yun Gon;Park, Sang Seo
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.51-60
    • /
    • 2022
  • Corona Virus Disease 19 pandemic (COVID-19) causes many deaths worldwide, and has enormous impacts on society and economy. The COVID-19 was caused by a new type of coronavirus (Severe Acute Respiratory Syndrome Cornonavirus 2; SARS-CoV-2), which has been found that these viruses can be effectively inactivated by ultraviolet (UV) radiation of 290~315 nm. In this study, 90% inactivation time of the SARS-CoV-2 virus was analyzed using ground observation data from Brewer spectrophotometer at Yonsei University, Seoul and simulation data from UVSPEC for the period of 2015~2017 and 2020. Based on 12:00-13:00 noon time, the shortest virus inactivation time were estimated as 13.5 minutes in June and 4.8 minutes in July/August, respectively, under all sky and clear sky conditions. In the diurnal and seasonal variations, SARS-CoV-2 could be inactivated by 90% when exposed to UV radiation within 60 minutes from 10:00 to 14:00, for the period of spring to autumn. However, in winter season, the natural prevention effect was meaningless because the intensity of UV radiation weakened, and the time required for virus inactivation increased. The spread of infectious diseases such as COVID-19 is related to various and complex interactions of several variables, but the natural inactivation of viruses by UV radiation presented in this study, especially seasonal differences, need to be considered as major variables.

Interferon-β alleviates sepsis by SIRT1-mediated blockage of endothelial glycocalyx shedding

  • Suhong Duan;Seung-Gook Kim;Hyung-Jin Lim;Hwa-Ryung Song;Myung-Kwan Han
    • BMB Reports
    • /
    • v.56 no.5
    • /
    • pp.314-319
    • /
    • 2023
  • Sepsis is a life-threatening multi-organ dysfunction with high mortality caused by the body's improper response to microbial infection. No new effective therapy has emerged that can adequately treat patients with sepsis. We previously demonstrated that interferon-β (IFN-β) protects against sepsis via sirtuin 1-(SIRT1)-mediated immunosuppression. Another study also reported its significant protective effect against acute respiratory distress syndrome, a complication of severe sepsis, in human patients. However, the IFN-β effect cannot solely be explained by SIRT1-mediated immunosuppression, since sepsis induces immunosuppression in patients. Here, we show that IFN-β, in combination with nicotinamide riboside (NR), alleviates sepsis by blocking endothelial damage via SIRT1 activation. IFN-β plus NR protected against cecal ligation puncture-(CLP)-induced sepsis in wild-type mice, but not in endothelial cell-specific Sirt1 knockout (EC-Sirt1 KO) mice. IFN-β upregulated SIRT1 protein expression in endothelial cells in a protein synthesis-independent manner. IFN-β plus NR reduced the CLP-induced increase in in vivo endothelial permeability in wild-type, but not EC-Sirt1 KO mice. IFN-β plus NR suppressed lipopolysaccharide-induced up-regulation of heparinase 1, but the effect was abolished by Sirt1 knockdown in endothelial cells. Our results suggest that IFN-β plus NR protects against endothelial damage during sepsis via activation of the SIRT1/heparinase 1 pathway.

In-depth Correlation Analysis of SARS-CoV-2 Effective Reproduction Number and Mobility Patterns: Three Groups of Countries

  • Setti, Mounir Ould;Tollis, Sylvain
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.2
    • /
    • pp.134-143
    • /
    • 2022
  • Objectives: Many governments have imposed-and are still imposing-mobility restrictions to contain the coronavirus disease 2019 (COVID-19) pandemic. However, there is no consensus on whether policy-induced reductions of human mobility effectively reduce the effective reproduction number (Rt) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several studies based on country-restricted data reported conflicting trends in the change of the SARS-CoV-2 Rt following mobility restrictions. The objective of this study was to examine, at the global scale, the existence of regional specificities in the correlations between Rt and human mobility. Methods: We computed the Rt of SARS-CoV-2 using data on worldwide infection cases reported by the Johns Hopkins University, and analyzed the correlation between Rt and mobility indicators from the Google COVID-19 Community Mobility Reports in 125 countries, as well as states/regions within the United States, using the Pearson correlation test, linear modeling, and quadratic modeling. Results: The correlation analysis identified countries where Rt negatively correlated with residential mobility, as expected by policymakers, but also countries where Rt positively correlated with residential mobility and countries with more complex correlation patterns. The correlations between Rt and residential mobility were non-linear in many countries, indicating an optimal level above which increasing residential mobility is counterproductive. Conclusions: Our results indicate that, in order to effectively reduce viral circulation, mobility restriction measures must be tailored by region, considering local cultural determinants and social behaviors. We believe that our results have the potential to guide differential refinement of mobility restriction policies at a country/regional resolution.

A bioinformatics approach to characterize a hypothetical protein Q6S8D9_SARS of SARS-CoV

  • Md Foyzur Rahman;Rubait Hasan;Mohammad Shahangir Biswas;Jamiatul Husna Shathi;Md Faruk Hossain;Aoulia Yeasmin;Mohammad Zakerin Abedin;Md Tofazzal Hossain
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.3.1-3.10
    • /
    • 2023
  • Characterization as well as prediction of the secondary and tertiary structure of hypothetical proteins from their amino acid sequences uploaded in databases by in silico approach are the critical issues in computational biology. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), which is responsible for pneumonia alike diseases, possesses a wide range of proteins of which many are still uncharacterized. The current study was conducted to reveal the physicochemical characteristics and structures of an uncharacterized protein Q6S8D9_SARS of SARS-CoV. Following the common flowchart of characterizing a hypothetical protein, several sophisticated computerized tools e.g., ExPASy Protparam, CD Search, SOPMA, PSIPRED, HHpred, etc. were employed to discover the functions and structures of Q6S8D9_SARS. After delineating the secondary and tertiary structures of the protein, some quality evaluating tools e.g., PROCHECK, ProSA-web etc. were performed to assess the structures and later the active site was identified also by CASTp v.3.0. The protein contains more negatively charged residues than positively charged residues and a high aliphatic index value which make the protein more stable. The 2D and 3D structures modeled by several bioinformatics tools ensured that the proteins had domain in it which indicated it was functional protein having the ability to trouble host antiviral inflammatory cytokine and interferon production pathways. Moreover, active site was found in the protein where ligand could bind. The study was aimed to unveil the features and structures of an uncharacterized protein of SARS-CoV which can be a therapeutic target for development of vaccines against the virus. Further research are needed to accomplish the task.