• Title/Summary/Keyword: Settlement Structure

Search Result 464, Processing Time 0.025 seconds

The study on the bearing capacity and settlement of a foundation placed over a tunnel (Tunnel 상부지반의 기초 지지력과 침하에 관한 연구)

  • 김수삼;정승용;김용수;권태창
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.4
    • /
    • pp.20-31
    • /
    • 1999
  • When a foundation on the ground with tunnel is constructed, the ultimate bearing capacity of a footing is reduced by tunnel. In practice, structure may bate a considerable damage because of large settlement. This study shows that the settlement which is caused by variety of the ultimated bearing capacity leads fatal damages to the footing above tunnel. Therefore, it is necessary to study on the reduction both of the ultimate bearing capacity which leads a failure and of tolerable settlement which satisfies the safety of the building. For this reason, the variety of ultimated bearing capacity was analyzed using tub-dimensional elasto-plastic finite difference method in this paper. As a result, bearing capacity of the foundation above tunnel should be determined after establishing limit of allowable settlement and considering reduction-ratio of bearing capacity.

  • PDF

Development of a Neural Network Expert System for Safety Analysis of Structures Adjacent to Tunnel Excavation Sites Focused on Development and Reliability Evaluation of Expert System (터널굴착 현장에 인접한 지상구조물의 안전성 평가용 전문가 시스템의 개발 (1) -전문가 시스템 개발 및 신뢰성 검증을 중심으로)

  • 배규진;신휴성
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.107-126
    • /
    • 1998
  • Ground settlements induced by tunnel excavation cause the foundations of the neighboring building structures to deform. An expert system called NESASS( Neural network Expert System for Adjacent Structure Safety analysis) was developed to analyze the structural safety of such building structures. NESASS predicts the trend of ground settlements resulting from tunnel excavation and carries out a safety analysis for building structures on the basis of the predicted ground settlements. Using neural network technique. the NESASS learns the database consisting of the measured ground settlements collected from numerous actual fields and infers a settlement trend at the field of interest. The NESASS calculates the magnitudes of angular distortion, deflection ratio, and differential settlement of the structure. and in turn, determines the safety of the structure. In addition, the NESASS predicts the patterns of cracks to be formed in the structure, using Dulacska model for crack evaluation. In this study, the ground settlements measured from Seoul subway construction sites were collected and classified with respect to the major factors influencing ground settlement. Subsequently, a database of ground settlement due to tunnel excavation was built. A parametric study was performed to select the optimal neural network model for the database. A comparison of the ground settlement predicted by the NESASS with the measured ones indicates that the NESASS leads to reasonable predictions. The results of confidence evaluation for safety evaluation system of the NESASS are presented in this paper.

  • PDF

Analysis of settlements of space frame-shear wall-soil system under seismic forces

  • Jain, D.K.;Hora, M.S.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1255-1276
    • /
    • 2015
  • The importance of considering soil-structure interaction effect in the analysis and design of RC frame buildings is increasingly recognized but still not penetrated to the grass root level owing to various complexities involved. It is well established fact that the soil-structure interaction effect considerably influence the design of multi-storey buildings subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral stability to resist seismic lateral loads. In the present work, the linear soil-structure analysis of a G+5 storey RC shear wall building frame resting on isolated column footings and supported by deformable soil is presented. The finite element modelling and analysis is carried out using ANSYS software under normal loads as well as under seismic loads. Various load combinations are considered as per IS-1893 (Part-1):2002. The interaction analysis is carried out with and without shear wall to investigate the effect of inclusion of shear wall on the total and differential settlements in the footings due to deformations in the soil mass. The frame and soil mass both are considered to behave in linear elastic manner. It is observed that the soil-structure interaction effect causes significant total and differential settlements in the footings. Maximum total settlement in footings occurs under vertical loads and inner footings settle more than outer footings creating a saucer shaped settlement profile of the footings. Each combination of seismic loads causes maximum differential settlement in one or more footings. Presence of shear wall decreases pulling/pushing effect of seismic forces on footings resulting in more stability to the structures.

Study on the Application of Press in Steel Pipe Pile for Restoring Building of different settlement (부동침하 건축물 복원을 위한 압입강관파일 공법 현장 적용에 관한 연구)

  • Sin, Jae-Kwon;Lee, Hee-Seok;Sho, Kwang-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.85-86
    • /
    • 2015
  • Recently, As the high rise buildings have been demanded due to the rising current of land price, the permanent drainage method have been applied during and after the construction as a way to reduce the buoyancy acting on the bottoms of the foundations in the basement. This method has brought about the consolidation subsidence of the ground and turned out to be the problems of sinking hole and foundation re-settlement. The representative methods to be used for extending the life cycle of the existing building structure which is tilted by the foundation re-settlement or differential settlement of the foundation can be divided into the building structures reinforcement and soil reinforcement. The purpose of this study is to analyze and present the application example of steel pipe pile method to extend the life cycle of the six -stories building tilted in a soft ground.

  • PDF

PRCG Method to restore settled concrete track and structure (침하된 콘크리트궤도 및 구조물의 복원을 위한 PRCG공법)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Kang, Tae-Ho;Shin, Hak-Yong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.866-871
    • /
    • 2010
  • Various design factors should be considered in order to apply the concrete slab track system on the soil/rock roadbed. One of the important factors is the settlement of roadbed. This settlement of concrete track should be supervised under the allowable settlement limit. If the settlement of roadbed under the concrete track exceed the allowable limit, the train serviceability will considerably come down and furthermore the fatal disaster may happen. Therefore, in this paper we introduced a PRCG(pressurized rapid-hardening cement grouting) method as a settlement restoration method that can be suitably adopted to the concrete slab track.

  • PDF

Settlement Reduction Effect of Advanced Back-to-Back Reinforced Retaining Wall

  • Koh, Taehoon;Hwang, Seonkeun;Jung, Hunchul;Jung, Hyuksang
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.107-111
    • /
    • 2013
  • In order to constrain the railway roadbed settlement which causes track irregularity, and thus threats running stability and ride quality, advanced Back-to-Back (BTB) reinforced retaining wall was numerically analyzed as railway roadbed structure. This study is intended to improve conventional Back-to-Back reinforced retaining wall as the technology which would reduce the roadbed settlement in a way of constraining the lateral displacement of its prestressed vertical facing and inducing arching effects in roadbed (backfill) placed between masonry diaphragm wall and vertical facing. As a result of numerical analysis, it was found that the roadbed settlement was reduced by 10% due to the prestressed vertical facing and embedded masonry diaphragm wall of the advanced Back-to-Back reinforced retaining wall system.

Cast study on the Design Application of Final Settlement in Soft Ground (연약지반 최종침하량의 설계 적용성에 관한 사례연구)

  • Kim, Young-Su;Park, See-Boum;Kim, Kyung-Tae;Kim, Chang-Hyun;Kim, Hyun-Gu;Yook, Il-Dong;Kim, Hung-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.948-955
    • /
    • 2005
  • In this case of study, Incheon International Airport 2nd phase site preparation 1st section estimated final settlement to improve soft ground. Final settlement is very important in preloading method. Recently, Hyperbolic method, Hoshino method and Asaoka method are used mostly in prediction of final settlement and this paper, Comparing a result of Final settlement, used to Artificial Neural Network. The structure of Dynamic Artificial Neural Network which predicted Final settlement, has application to Young_Jong Island other site, If new investigation data will be added. Also, It is expected to save measuring_system cost in soft ground.

  • PDF

Prediction methods on tunnel-excavation induced surface settlement around adjacent building

  • Ding, Zhi;Wei, Xin-jiang;Wei, Gang
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.185-195
    • /
    • 2017
  • With the rapid development of urban underground traffic, the study of soil deformation induced by subway tunnel construction and its settlement prediction are gradually of general concern in engineering circles. The law of soil displacement caused by shield tunnel construction of adjacent buildings is analyzed in this paper. The author holds that ground surface settlement based on the Gauss curve or Peck formula induced by tunnel excavation of adjacent buildings is not reasonable. Integrating existing research accomplishments, the paper proposed that surface settlement presents cork distribution curve characters, skewed distribution curve characteristics and normal distribution curve characteristics when the tunnel is respectively under buildings, within the scope of the disturbance and outside the scope of the disturbance. Calculation formulas and parameters on cork distribution curve and skewed distribution curve were put forward. The numerical simulation, experimental comparison and model test analysis show that it is reasonable for surface settlement to present cork distribution curve characters, skewed distribution curve characteristics and normal distribution curve characteristics within a certain range. The research findings can be used to make effective prediction of ground surface settlement caused by tunnel construction of adjacent buildings, and to provide theoretical guidance for the design and shield tunnelling.

Wave Propagation Analysis for Pile-Slab Section on High Speed Railway (고속철도 파일슬래브공법 적용구간에서의 파전파해석)

  • Lee, Kang-Myung;Lee, Il-Wha
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3201-3207
    • /
    • 2011
  • This paper reviewed wave propagation of train vibration based on the study of high speed railway soft ground section with pile slab construction. In a filed of railway, concrete track has been adapted in a railway construction. And in order to maintain its track, soil improving method was required to control residual settlement. Within many soft ground settlement prevention techniques, pile slab method has an effect of minimizing residual settlement of soft ground. This is possible using support embankment load method by construct pile slab or cap the upper soft ground. This paper reviewed vibration wave characteristic of soft ground section with pile slab using numerical analysis application through finite element analysis. Pile slab method is established between high stiffened soft ground and embankment this creates a possibility of vibration block or slab amplification. Thus analyzed of wave propagation was done with roadbed and structure property to confirm application performance of pile slab method of high speed railway structure.

  • PDF

A study on reduction effects of the ground loss in pre-loading (선행하중 재하시 지반손실 감소효과에 관한 연구)

  • Kim, Bong-Yoo;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.224-231
    • /
    • 2005
  • The ground excavation causes the deformation of the ground where the neighborhood structure is located. The ground deformation result in the vertical settlement of the neighborhood structure as well as the horizontal displacement of the temporary earth retaining structures. The decreased volume of the soil due to the ground settlement is defined as 'the ground loss quantity' or 'the ground loss'. When excavation is performed nearby existing structures, retaining walls should be designed and constructed to minimize the ground loss. Among various methods for reducing the ground loss, this study introduces the pre-loading method which has been recently developed. The reduction effect of the ground loss by pre-loading has been found to be larger as using a wall with relatively smaller rigidity.

  • PDF